論文の概要: Dr. GPT in Campus Counseling: Understanding Higher Education Students' Opinions on LLM-assisted Mental Health Services
- arxiv url: http://arxiv.org/abs/2409.17572v1
- Date: Thu, 26 Sep 2024 06:40:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-28 22:46:14.727860
- Title: Dr. GPT in Campus Counseling: Understanding Higher Education Students' Opinions on LLM-assisted Mental Health Services
- Title(参考訳): キャンパスカウンセリングにおけるGPT : LLM支援メンタルヘルスサービスに対する高等教育学生の意見の理解
- Authors: Owen Xingjian Zhang, Shuyao Zhou, Jiayi Geng, Yuhan Liu, Sunny Xun Liu,
- Abstract要約: 大規模言語モデル(LLM)は、学生の精神的幸福を高めるために利用することができる。
その結果,学生のLSMの受容はシナリオによって異なることが明らかとなった。
これらの知見は、学生のメンタルヘルスを効果的に支援し、強化するために、AI技術をどのように設計し、実装すべきかを示唆する。
- 参考スコア(独自算出の注目度): 12.190234761761923
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In response to the increasing mental health challenges faced by college students, we sought to understand their perspectives on how AI applications, particularly Large Language Models (LLMs), can be leveraged to enhance their mental well-being. Through pilot interviews with ten diverse students, we explored their opinions on the use of LLMs across five fictional scenarios: General Information Inquiry, Initial Screening, Reshaping Patient-Expert Dynamics, Long-term Care, and Follow-up Care. Our findings revealed that students' acceptance of LLMs varied by scenario, with participants highlighting both potential benefits, such as proactive engagement and personalized follow-up care, and concerns, including limitations in training data and emotional support. These insights inform how AI technology should be designed and implemented to effectively support and enhance students' mental well-being, particularly in scenarios where LLMs can complement traditional methods, while maintaining empathy and respecting individual preferences.
- Abstract(参考訳): 大学生が直面するメンタルヘルスの課題に対する対応として,AIアプリケーション,特にLarge Language Models(LLMs)の考え方を,彼らのメンタルヘルス向上に活用する方法の理解を模索した。
10人の多様な学生とのパイロットインタビューを通じて、一般情報調査、初期スクリーニング、患者-専門ダイナミクスの再構築、長期ケア、フォローアップケアの5つの架空のシナリオでLLMの使用について、彼らの意見を探った。
その結果、学生のLCMの受容は、積極的エンゲージメントやパーソナライズされたフォローアップケアといった潜在的なメリットと、トレーニングデータや感情的サポートの制限といった懸念の両方に焦点が当てられ、シナリオによって異なることがわかった。
これらの知見は、特にLLMが従来の手法を補完し、共感を維持し、個人の好みを尊重するシナリオにおいて、生徒の精神的幸福を効果的に支援し、強化するために、AI技術をどのように設計し、実装すべきかを示唆する。
関連論文リスト
- Demystifying Large Language Models for Medicine: A Primer [50.83806796466396]
大規模言語モデル(LLM)は、医療のさまざまな側面に革命をもたらすことのできる、変革的なAIツールのクラスである。
本チュートリアルは、LSMを臨床実践に効果的に統合するために必要なツールを医療専門家に提供することを目的としている。
論文 参考訳(メタデータ) (2024-10-24T15:41:56Z) - SouLLMate: An Application Enhancing Diverse Mental Health Support with Adaptive LLMs, Prompt Engineering, and RAG Techniques [9.146311285410631]
メンタルヘルスの問題は個人の日常生活に大きな影響を及ぼすが、多くの人は利用可能なオンラインリソースでも必要な支援を受けていない。
この研究は、最先端のAI技術を通じて、多様な、アクセス可能な、スティグマのない、パーソナライズされた、リアルタイムのメンタルヘルスサポートを提供することを目的としている。
論文 参考訳(メタデータ) (2024-10-17T22:04:32Z) - CBT-Bench: Evaluating Large Language Models on Assisting Cognitive Behavior Therapy [67.23830698947637]
認知行動療法(CBT)支援の体系的評価のための新しいベンチマークであるCBT-BENCHを提案する。
我々は, CBT-BENCHにおける3段階の課題を含む: I: 基本的CBT知識獲得, 複数選択質問のタスク; II: 認知的モデル理解, 認知的歪み分類, 主根的信念分類, きめ細かい中核信念分類のタスク; III: 治療的応答生成, CBTセラピーセッションにおける患者音声に対する応答生成のタスク。
実験結果から,LLMはCBT知識のリサイティングに優れるが,複雑な実世界のシナリオでは不十分であることが示唆された。
論文 参考訳(メタデータ) (2024-10-17T04:52:57Z) - Enhancing AI-Driven Psychological Consultation: Layered Prompts with Large Language Models [44.99833362998488]
我々は, GPT-4 のような大規模言語モデル (LLM) を用いて, 心理的コンサルテーションサービスの強化について検討する。
提案手法では,ユーザ入力に動的に適応する新しい階層型プロンプトシステムを提案する。
また,LLMの感情的インテリジェンスを高めるために,共感とシナリオに基づくプロンプトを開発する。
論文 参考訳(メタデータ) (2024-08-29T05:47:14Z) - RuleAlign: Making Large Language Models Better Physicians with Diagnostic Rule Alignment [54.91736546490813]
本稿では,大規模言語モデルと特定の診断規則との整合性を考慮したルールアラインフレームワークを提案する。
患者と医師間の規則に基づくコミュニケーションを含む医療対話データセットを開発した。
実験の結果,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2024-08-22T17:44:40Z) - Optimizing Psychological Counseling with Instruction-Tuned Large Language Models [9.19192059750618]
本稿では,心理カウンセリングにおける大規模言語モデル(LLM)の適用について検討する。
本稿では,共感的,関連性,支援的な応答を提供することで,特定のプロンプトを持つLLMを指導し,その性能を高める方法を提案する。
論文 参考訳(メタデータ) (2024-06-19T15:13:07Z) - Challenges of Large Language Models for Mental Health Counseling [4.604003661048267]
世界のメンタルヘルス危機は、精神疾患の急速な増加、限られた資源、治療を求める社会的便宜によって悪化している。
メンタルヘルス領域における大規模言語モデル(LLM)の適用は、提供された情報の正確性、有効性、信頼性に関する懸念を提起する。
本稿では, モデル幻覚, 解釈可能性, バイアス, プライバシ, 臨床効果など, 心理カウンセリングのためのLSMの開発に伴う課題について検討する。
論文 参考訳(メタデータ) (2023-11-23T08:56:41Z) - Evaluating the Efficacy of Interactive Language Therapy Based on LLM for
High-Functioning Autistic Adolescent Psychological Counseling [1.1780706927049207]
本研究では,高機能自閉症青年に対する対話型言語治療におけるLarge Language Models(LLMs)の有効性について検討した。
LLMは、従来の心理学的カウンセリング手法を強化する新しい機会を提供する。
論文 参考訳(メタデータ) (2023-11-12T07:55:39Z) - A Survey of Large Language Models in Medicine: Progress, Application, and Challenge [85.09998659355038]
大規模言語モデル (LLM) は、人間の言語を理解し、生成する能力のために大きな注目を集めている。
本総説は,医学におけるLSMの開発と展開について概説することを目的としている。
論文 参考訳(メタデータ) (2023-11-09T02:55:58Z) - Building Emotional Support Chatbots in the Era of LLMs [64.06811786616471]
我々は,Large Language Models (LLMs) の計算能力で人間の洞察を合成する革新的な方法論を導入する。
また,ChatGPTの文脈内学習の可能性を利用して,ExTESと呼ばれる感情支援対話データセットを生成する。
次に、LLaMAモデルに高度なチューニング手法を展開し、多様なトレーニング戦略の影響を検証し、最終的に感情的支援の相互作用に細心の注意を払ってLLMを出力する。
論文 参考訳(メタデータ) (2023-08-17T10:49:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。