Conjugate Bayesian Two-step Change Point Detection for Hawkes Process
- URL: http://arxiv.org/abs/2409.17591v4
- Date: Tue, 15 Oct 2024 11:52:53 GMT
- Title: Conjugate Bayesian Two-step Change Point Detection for Hawkes Process
- Authors: Zeyue Zhang, Xiaoling Lu, Feng Zhou,
- Abstract summary: We propose a conjugate Bayesian two-step change point detection method for the Hawkes process.
Experiments on both synthetic and real data demonstrate the superior effectiveness and efficiency of our method.
- Score: 3.819329978428786
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Bayesian two-step change point detection method is popular for the Hawkes process due to its simplicity and intuitiveness. However, the non-conjugacy between the point process likelihood and the prior requires most existing Bayesian two-step change point detection methods to rely on non-conjugate inference methods. These methods lack analytical expressions, leading to low computational efficiency and impeding timely change point detection. To address this issue, this work employs data augmentation to propose a conjugate Bayesian two-step change point detection method for the Hawkes process, which proves to be more accurate and efficient. Extensive experiments on both synthetic and real data demonstrate the superior effectiveness and efficiency of our method compared to baseline methods. Additionally, we conduct ablation studies to explore the robustness of our method concerning various hyperparameters. Our code is publicly available at https://github.com/Aurora2050/CoBay-CPD.
Related papers
- Faster WIND: Accelerating Iterative Best-of-$N$ Distillation for LLM Alignment [81.84950252537618]
This paper reveals a unified game-theoretic connection between iterative BOND and self-play alignment.
We establish a novel framework, WIN rate Dominance (WIND), with a series of efficient algorithms for regularized win rate dominance optimization.
arXiv Detail & Related papers (2024-10-28T04:47:39Z) - Greedy online change point detection [0.0]
Greedy Online Change Point Detection (GOCPD) is a computationally appealing method which finds change points by maximizing the probability of the data coming from the (temporal) concatenation of two independent models.
We show that, for time series with a single change point, this objective is unimodal and thus CPD can be accelerated via ternary search with logarithmic complexity.
arXiv Detail & Related papers (2023-08-14T08:59:59Z) - Fr\'echet Statistics Based Change Point Detection in Multivariate Hawkes
Process [17.72531431604197]
We propose a new approach for change point detection in causal networks using Frechet statistics.
Our method splits the point process into overlapping windows, estimates kernel matrices in each window, and reconstructs the signed Laplacians.
arXiv Detail & Related papers (2023-08-13T13:46:38Z) - Nystrom Method for Accurate and Scalable Implicit Differentiation [25.29277451838466]
We show that the Nystrom method consistently achieves comparable or even superior performance to other approaches.
The proposed method avoids numerical instability and can be efficiently computed in matrix operations without iterations.
arXiv Detail & Related papers (2023-02-20T02:37:26Z) - A Contrastive Approach to Online Change Point Detection [4.762323642506733]
We suggest a novel procedure for online change point detection.
Our approach expands an idea of maximizing a discrepancy measure between points from pre-change and post-change distributions.
We prove non-asymptotic bounds on the average running length of the procedure and its expected detection delay.
arXiv Detail & Related papers (2022-06-21T07:01:36Z) - On the efficiency of Stochastic Quasi-Newton Methods for Deep Learning [0.0]
We study the behaviour of quasi-Newton training algorithms for deep memory networks.
We show that quasi-Newtons are efficient and able to outperform in some instances the well-known first-order Adam run.
arXiv Detail & Related papers (2022-05-18T20:53:58Z) - E-detectors: a nonparametric framework for sequential change detection [86.15115654324488]
We develop a fundamentally new and general framework for sequential change detection.
Our procedures come with clean, nonasymptotic bounds on the average run length.
We show how to design their mixtures in order to achieve both statistical and computational efficiency.
arXiv Detail & Related papers (2022-03-07T17:25:02Z) - Scalable Personalised Item Ranking through Parametric Density Estimation [53.44830012414444]
Learning from implicit feedback is challenging because of the difficult nature of the one-class problem.
Most conventional methods use a pairwise ranking approach and negative samplers to cope with the one-class problem.
We propose a learning-to-rank approach, which achieves convergence speed comparable to the pointwise counterpart.
arXiv Detail & Related papers (2021-05-11T03:38:16Z) - SIMPLE: SIngle-network with Mimicking and Point Learning for Bottom-up
Human Pose Estimation [81.03485688525133]
We propose a novel multi-person pose estimation framework, SIngle-network with Mimicking and Point Learning for Bottom-up Human Pose Estimation (SIMPLE)
Specifically, in the training process, we enable SIMPLE to mimic the pose knowledge from the high-performance top-down pipeline.
Besides, SIMPLE formulates human detection and pose estimation as a unified point learning framework to complement each other in single-network.
arXiv Detail & Related papers (2021-04-06T13:12:51Z) - Diverse Knowledge Distillation for End-to-End Person Search [81.4926655119318]
Person search aims to localize and identify a specific person from a gallery of images.
Recent methods can be categorized into two groups, i.e., two-step and end-to-end approaches.
We propose a simple yet strong end-to-end network with diverse knowledge distillation to break the bottleneck.
arXiv Detail & Related papers (2020-12-21T09:04:27Z) - Change Point Detection in Time Series Data using Autoencoders with a
Time-Invariant Representation [69.34035527763916]
Change point detection (CPD) aims to locate abrupt property changes in time series data.
Recent CPD methods demonstrated the potential of using deep learning techniques, but often lack the ability to identify more subtle changes in the autocorrelation statistics of the signal.
We employ an autoencoder-based methodology with a novel loss function, through which the used autoencoders learn a partially time-invariant representation that is tailored for CPD.
arXiv Detail & Related papers (2020-08-21T15:03:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.