論文の概要: Unifying Dimensions: A Linear Adaptive Approach to Lightweight Image Super-Resolution
- arxiv url: http://arxiv.org/abs/2409.17597v1
- Date: Thu, 26 Sep 2024 07:24:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-28 22:36:10.335004
- Title: Unifying Dimensions: A Linear Adaptive Approach to Lightweight Image Super-Resolution
- Title(参考訳): 統一次元:軽量画像超解法への線形適応的アプローチ
- Authors: Zhenyu Hu, Wanjie Sun,
- Abstract要約: ウィンドウベーストランスは超高解像度タスクにおいて優れた性能を示した。
畳み込みニューラルネットワークよりも計算複雑性と推論レイテンシが高い。
線形適応ミキサーネットワーク(LAMNet)という,畳み込みに基づくトランスフォーマーフレームワークを構築する。
- 参考スコア(独自算出の注目度): 6.857919231112562
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Window-based transformers have demonstrated outstanding performance in super-resolution tasks due to their adaptive modeling capabilities through local self-attention (SA). However, they exhibit higher computational complexity and inference latency than convolutional neural networks. In this paper, we first identify that the adaptability of the Transformers is derived from their adaptive spatial aggregation and advanced structural design, while their high latency results from the computational costs and memory layout transformations associated with the local SA. To simulate this aggregation approach, we propose an effective convolution-based linear focal separable attention (FSA), allowing for long-range dynamic modeling with linear complexity. Additionally, we introduce an effective dual-branch structure combined with an ultra-lightweight information exchange module (IEM) to enhance the aggregation of information by the Token Mixer. Finally, with respect to the structure, we modify the existing spatial-gate-based feedforward neural networks by incorporating a self-gate mechanism to preserve high-dimensional channel information, enabling the modeling of more complex relationships. With these advancements, we construct a convolution-based Transformer framework named the linear adaptive mixer network (LAMNet). Extensive experiments demonstrate that LAMNet achieves better performance than existing SA-based Transformer methods while maintaining the computational efficiency of convolutional neural networks, which can achieve a \(3\times\) speedup of inference time. The code will be publicly available at: https://github.com/zononhzy/LAMNet.
- Abstract(参考訳): ウィンドウベースのトランスフォーマーは、局所自己注意(SA)による適応モデリング能力により、超分解能タスクにおいて優れた性能を示した。
しかし、畳み込みニューラルネットワークよりも計算複雑性と推論レイテンシが高い。
本稿では,変換器の適応性は適応的な空間アグリゲーションと高度な構造設計から導かれるものであるのに対して,計算コストと局所的なSAに伴うメモリレイアウト変換から高いレイテンシが得られたことを最初に確認する。
このアグリゲーションアプローチをシミュレートするために、線形複雑度を持つ長距離動的モデリングを可能にする効果的な畳み込みに基づく線形焦点分離型アテンション(FSA)を提案する。
さらに,超軽量情報交換モジュール (IEM) と組み合わせて,Token Mixer による情報収集を促進できる効果的なデュアルブランチ構造を導入する。
最後に,この構造に関して,高次元チャネル情報を保持する自己ゲート機構を組み込むことにより,既存の空間ゲートベースフィードフォワードニューラルネットワークを改良し,より複雑な関係をモデル化する。
これらの進歩により、線形適応ミキサーネットワーク(LAMNet)と呼ばれる畳み込みベースのトランスフォーマーフレームワークを構築した。
LAMNetは、畳み込みニューラルネットワークの計算効率を維持しつつ、既存のSAベースのTransformer法よりも優れた性能を実現し、推論時間の \(3\times\) スピードアップを達成できることを示した。
コードは、https://github.com/zononhzy/LAMNet.comで公開される。
関連論文リスト
- TCCT-Net: Two-Stream Network Architecture for Fast and Efficient Engagement Estimation via Behavioral Feature Signals [58.865901821451295]
本稿では,新しい2ストリーム機能融合 "Tensor-Convolution and Convolution-Transformer Network" (TCCT-Net) アーキテクチャを提案する。
時間空間領域における意味のあるパターンをよりよく学習するために、ハイブリッド畳み込み変換器を統合する「CT」ストリームを設計する。
並行して、時間周波数領域からリッチなパターンを効率的に抽出するために、連続ウェーブレット変換(CWT)を用いて情報を2次元テンソル形式で表現する「TC」ストリームを導入する。
論文 参考訳(メタデータ) (2024-04-15T06:01:48Z) - Self-Supervised Pre-Training for Table Structure Recognition Transformer [25.04573593082671]
テーブル構造認識変換器のための自己教師付き事前学習(SSP)手法を提案する。
線形射影変換器とハイブリッドCNN変換器のパフォーマンスギャップは、TSRモデルにおける視覚エンコーダのSSPにより緩和できる。
論文 参考訳(メタデータ) (2024-02-23T19:34:06Z) - RWKV: Reinventing RNNs for the Transformer Era [54.716108899349614]
本稿では,変換器の効率的な並列化学習とRNNの効率的な推論を組み合わせた新しいモデルアーキテクチャを提案する。
モデルを最大14億のパラメータにスケールし、トレーニングされたRNNの中では最大で、同じサイズのTransformerと同等のRWKVのパフォーマンスを実現しています。
論文 参考訳(メタデータ) (2023-05-22T13:57:41Z) - Efficient Sparsely Activated Transformers [0.34410212782758054]
トランスフォーマーベースのニューラルネットワークは、多くの機械学習ドメインで最先端のタスクパフォーマンスを実現している。
最近の研究は、これらのネットワークへの動的挙動の混合層(mixed-of-expert layer)の形での統合について検討している。
我々は,既存のTransformerベースのネットワークとユーザ定義のレイテンシターゲットを取り入れたPLANERという新しいシステムを導入する。
論文 参考訳(メタデータ) (2022-08-31T00:44:27Z) - Cross-receptive Focused Inference Network for Lightweight Image
Super-Resolution [64.25751738088015]
トランスフォーマーに基づく手法は、単一画像超解像(SISR)タスクにおいて顕著な性能を示した。
動的に特徴を抽出するために文脈情報を組み込む必要がある変換器は無視される。
我々は,CNNとTransformerを混合したCTブロックのカスケードで構成される,軽量なクロスレセプティブ・フォーカスド・推論・ネットワーク(CFIN)を提案する。
論文 参考訳(メタデータ) (2022-07-06T16:32:29Z) - Rich CNN-Transformer Feature Aggregation Networks for Super-Resolution [50.10987776141901]
近年の視覚変換器と自己注意は,様々なコンピュータビジョンタスクにおいて有望な成果を上げている。
我々は,CNNの局所的特徴とトランスフォーマーが捉えた長距離依存性を活用する,超解像(SR)タスクのための効果的なハイブリッドアーキテクチャを提案する。
提案手法は,多数のベンチマークデータセットから最先端のSR結果を得る。
論文 参考訳(メタデータ) (2022-03-15T06:52:25Z) - CSformer: Bridging Convolution and Transformer for Compressive Sensing [65.22377493627687]
本稿では,CNNからの詳細な空間情報を活用するためのハイブリッドフレームワークと,表現学習の強化を目的としたトランスフォーマーが提供するグローバルコンテキストを統合することを提案する。
提案手法は、適応的なサンプリングとリカバリからなるエンドツーエンドの圧縮画像センシング手法である。
実験により, 圧縮センシングにおける専用トランスアーキテクチャの有効性が示された。
論文 参考訳(メタデータ) (2021-12-31T04:37:11Z) - Optimization-driven Machine Learning for Intelligent Reflecting Surfaces
Assisted Wireless Networks [82.33619654835348]
インテリジェントサーフェス(IRS)は、個々の散乱素子の位相シフトを制御して無線チャネルを再形成するために用いられる。
散乱素子の規模が大きいため、受動ビームフォーミングは一般に高い計算複雑性によって挑戦される。
本稿では、IRS支援無線ネットワークの性能向上のための機械学習(ML)アプローチに焦点を当てる。
論文 参考訳(メタデータ) (2020-08-29T08:39:43Z) - Joint Self-Attention and Scale-Aggregation for Self-Calibrated Deraining
Network [13.628218953897946]
本稿では,JDNetとよばれる有効アルゴリズムを提案する。
自己校正畳み込みを用いたスケール・アグリゲーション・セルフアグリゲーション・モジュールを巧みに設計することにより,提案モデルはより優れたデコレーション結果が得られる。
論文 参考訳(メタデータ) (2020-08-06T17:04:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。