論文の概要: Convolutional Signal Propagation: A Simple Scalable Algorithm for Hypergraphs
- arxiv url: http://arxiv.org/abs/2409.17628v1
- Date: Thu, 26 Sep 2024 08:22:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-28 21:53:57.475636
- Title: Convolutional Signal Propagation: A Simple Scalable Algorithm for Hypergraphs
- Title(参考訳): Convolutional Signal Propagation: ハイパーグラフのためのシンプルなスケーラブルアルゴリズム
- Authors: Pavel Procházka, Marek Dědič, Lukáš Bajer,
- Abstract要約: 本稿では,両部グラフ(ハイパーグラフ)で動作する非パラメトリック単純かつスケーラブルな方法である畳み込み信号伝搬(CSP)を提案する。
計算複雑性を低く保ちながら,CSPが競争性能を提供することを示す。
ハイパーグラフの操作にもかかわらず、CSPは自然言語処理のようなハイパーグラフに関連のないタスクで良い結果を得る。
- 参考スコア(独自算出の注目度): 0.13654846342364302
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Last decade has seen the emergence of numerous methods for learning on graphs, particularly Graph Neural Networks (GNNs). These methods, however, are often not directly applicable to more complex structures like bipartite graphs (equivalent to hypergraphs), which represent interactions among two entity types (e.g. a user liking a movie). This paper proposes Convolutional Signal Propagation (CSP), a non-parametric simple and scalable method that natively operates on bipartite graphs (hypergraphs) and can be implemented with just a few lines of code. After defining CSP, we demonstrate its relationship with well-established methods like label propagation, Naive Bayes, and Hypergraph Convolutional Networks. We evaluate CSP against several reference methods on real-world datasets from multiple domains, focusing on retrieval and classification tasks. Our results show that CSP offers competitive performance while maintaining low computational complexity, making it an ideal first choice as a baseline for hypergraph node classification and retrieval. Moreover, despite operating on hypergraphs, CSP achieves good results in tasks typically not associated with hypergraphs, such as natural language processing.
- Abstract(参考訳): 過去10年間、グラフ、特にグラフニューラルネットワーク(GNN)で学ぶための多くの方法が出現してきた。
しかしながら、これらの手法は2つのエンティティタイプ間の相互作用を表す二部グラフ(ハイパーグラフと同等)のようなより複雑な構造には直接適用されないことが多い(例えば、ユーザーが映画を好む)。
本稿では,2部グラフ(ハイパーグラフ)をネイティブに操作し,ほんの数行のコードで実装可能な,非パラメトリックなシンプルでスケーラブルな手法である畳み込み信号伝搬(CSP)を提案する。
CSPの定義後,ラベル伝搬,ナイーブベイズ,ハイパーグラフ畳み込みネットワークなど,確立された手法との関係を実証する。
我々は,複数の領域からの実世界のデータセットに対する参照手法に対してCSPを評価し,検索と分類タスクに焦点をあてた。
この結果から, CSPは計算複雑性を低く保ちながら, 競争性能が向上し, ハイパーグラフノードの分類と検索のベースラインとして理想的な選択肢であることが示唆された。
さらに、ハイパーグラフの操作にも拘わらず、CSPは自然言語処理のようなハイパーグラフに関連のないタスクで良い結果が得られる。
関連論文リスト
- From Hypergraph Energy Functions to Hypergraph Neural Networks [94.88564151540459]
パラメータ化されたハイパーグラフ正規化エネルギー関数の表現型族を示す。
次に、これらのエネルギーの最小化がノード埋め込みとして効果的に機能することを実証する。
提案した双レベルハイパーグラフ最適化と既存のGNNアーキテクチャを共通的に用いている。
論文 参考訳(メタデータ) (2023-06-16T04:40:59Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
本稿では,任意のノード間のノード信号を効率的に伝搬する全ペアメッセージパッシング方式を提案する。
効率的な計算は、カーナライズされたGumbel-Softmax演算子によって実現される。
グラフ上のノード分類を含む様々なタスクにおいて,本手法の有望な有効性を示す実験を行った。
論文 参考訳(メタデータ) (2023-06-14T09:21:15Z) - Neural Graph Matching for Pre-training Graph Neural Networks [72.32801428070749]
グラフニューラルネットワーク(GNN)は、構造データのモデリングにおいて強力な能力を示している。
GMPTと呼ばれる新しいグラフマッチングベースのGNN事前学習フレームワークを提案する。
提案手法は,完全自己指導型プレトレーニングと粗粒型プレトレーニングに適用できる。
論文 参考訳(メタデータ) (2022-03-03T09:53:53Z) - SIGMA: A Structural Inconsistency Reducing Graph Matching Algorithm [21.1095092767297]
グラフマッチングの精度、構造的不整合(SI)を測定するための新しい基準を提案する。
具体的には、SIは、グラフのマルチホップ構造に対応するために熱拡散ウェーブレットを組み込む。
ミラー降下法を用いて,新しいK-ホップ構造に基づくマッチングコストでGromov-Wasserstein距離を解くことにより,SIGMAを導出可能であることを示す。
論文 参考訳(メタデータ) (2022-02-06T15:18:37Z) - HyperSF: Spectral Hypergraph Coarsening via Flow-based Local Clustering [9.438207505148947]
本稿では,ハイパーグラフのスペクトル(構造)特性を保存するために,効率的なスペクトルハイパーグラフ粗大化手法を提案する。
提案手法は,ハイパーグラフクラスタリングのマルチウェイコンダクタンスを大幅に向上させることができることを示す。
論文 参考訳(メタデータ) (2021-08-17T22:20:23Z) - A Robust and Generalized Framework for Adversarial Graph Embedding [73.37228022428663]
本稿では,AGE という逆グラフ埋め込みのための頑健なフレームワークを提案する。
AGEは、暗黙の分布から強化された負のサンプルとして偽の隣接ノードを生成する。
本フレームワークでは,3種類のグラフデータを扱う3つのモデルを提案する。
論文 参考訳(メタデータ) (2021-05-22T07:05:48Z) - Spatial-spectral Hyperspectral Image Classification via Multiple Random
Anchor Graphs Ensemble Learning [88.60285937702304]
本稿では,複数のランダムアンカーグラフアンサンブル学習(RAGE)を用いた空間スペクトルHSI分類手法を提案する。
まず、各選択されたバンドのより記述的な特徴を抽出し、局所的な構造と領域の微妙な変化を保存するローカルバイナリパターンを採用する。
次に,アンカーグラフの構成に適応隣接代入を導入し,計算複雑性を低減した。
論文 参考訳(メタデータ) (2021-03-25T09:31:41Z) - NetVec: A Scalable Hypergraph Embedding System [1.8979377273990425]
スケーラブルな非監視ハイパーグラフ埋め込みのための新しいフレームワークであるNetVecを紹介します。
我々は、NetVecがグラフ埋め込みアルゴリズムと結合して、数百万のノードとハイパーエッジを数分で埋め込むことができることを示す。
論文 参考訳(メタデータ) (2021-03-09T18:06:56Z) - Learning the Implicit Semantic Representation on Graph-Structured Data [57.670106959061634]
グラフ畳み込みネットワークにおける既存の表現学習手法は主に、各ノードの近傍を知覚全体として記述することで設計される。
本稿では,グラフの潜在意味パスを学習することで暗黙的な意味を探索する意味グラフ畳み込みネットワーク(sgcn)を提案する。
論文 参考訳(メタデータ) (2021-01-16T16:18:43Z) - Scalable Graph Neural Networks for Heterogeneous Graphs [12.44278942365518]
グラフニューラルネットワーク(GNN)は、グラフ構造化データを学習するためのパラメトリックモデルの一般的なクラスである。
最近の研究は、GNNが主に機能をスムースにするためにグラフを使用しており、ベンチマークタスクで競合する結果を示していると主張している。
本研究では、これらの結果が異種グラフに拡張可能かどうかを問うとともに、異なるエンティティ間の複数のタイプの関係を符号化する。
論文 参考訳(メタデータ) (2020-11-19T06:03:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。