Atom graph, partial Boolean algebra and quantum contextuality
- URL: http://arxiv.org/abs/2409.17651v1
- Date: Thu, 26 Sep 2024 08:57:04 GMT
- Title: Atom graph, partial Boolean algebra and quantum contextuality
- Authors: Songyi Liu, Yongjun Wang, Baoshan Wang, Jian Yan, Heng Zhou,
- Abstract summary: We show that quantum systems are uniquely determined by their atom graphs.
We also present a general and parametric description for Kochen-Specker theorem based on graphs.
- Score: 3.9474648943255937
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Partial Boolean algebra underlies the quantum logic as an important tool for quantum contextuality. We propose the notion \textit{atom graphs} to reveal the graph structure of partial Boolean algebra for quantum systems by proving that (i) the partial Boolean algebras for quantum systems are determined by their atom graphs; (ii) the states on atom graphs can be extended uniquely to the partial Boolean algebras, and (iii) each exclusivity graph is an induced graph of an atom graph. (i) and (ii) show that the quantum systems are uniquely determined by their atom graphs. which proves the reasonability of graphs as the models of quantum experiments. (iii) establishes a connection between partial Boolean algebra and exclusivity graphs, and introduces a method to express the exclusivity experiments more precisely. We also present a general and parametric description for Kochen-Specker theorem based on graphs, which gives a type of non-contextuality inequality for KS contextuality.
Related papers
- Gaussian Entanglement Measure: Applications to Multipartite Entanglement
of Graph States and Bosonic Field Theory [50.24983453990065]
An entanglement measure based on the Fubini-Study metric has been recently introduced by Cocchiarella and co-workers.
We present the Gaussian Entanglement Measure (GEM), a generalization of geometric entanglement measure for multimode Gaussian states.
By providing a computable multipartite entanglement measure for systems with a large number of degrees of freedom, we show that our definition can be used to obtain insights into a free bosonic field theory.
arXiv Detail & Related papers (2024-01-31T15:50:50Z) - Algebraic Geometry of Quantum Graphical Models [0.0]
We introduce the foundations to carry out a similar study of quantum counterparts.
quantum graphical models are families of quantum states satisfying certain locality or correlation conditions encoded by a graph.
arXiv Detail & Related papers (2023-08-22T16:07:07Z) - Graph-theoretic insights on the constructability of complex entangled states [0.24578723416255752]
We introduce the technique of local sparsification on experiment graphs, using which we answer a crucial open question in experimental quantum optics.
This provides us with more insights into quantum resource theory, the limitation of specific quantum photonic systems and initiates the use of graph-theoretic techniques for designing quantum physics experiments.
arXiv Detail & Related papers (2023-04-13T11:13:17Z) - Q2Graph: a modelling tool for measurement-based quantum computing [0.0]
The quantum circuit model is the default for encoding an algorithm intended for a NISQ computer or a quantum computing simulator.
A graph representation is well-suited for algorithms intended for a quantum computing facility founded on measurement-based quantum computing (MBQC) principles.
We submit Q2Graph, a software package for designing and testing of simple graphs as algorithms for quantum computing facilities.
arXiv Detail & Related papers (2022-10-03T00:12:44Z) - From Quantum Graph Computing to Quantum Graph Learning: A Survey [86.8206129053725]
We first elaborate the correlations between quantum mechanics and graph theory to show that quantum computers are able to generate useful solutions.
For its practicability and wide-applicability, we give a brief review of typical graph learning techniques.
We give a snapshot of quantum graph learning where expectations serve as a catalyst for subsequent research.
arXiv Detail & Related papers (2022-02-19T02:56:47Z) - Spectral bounds for the quantum chromatic number of quantum graphs [0.0]
We obtain lower bounds for the classical and quantum number of a quantum graph using eigenvalues of the quantum adjacency matrix.
We generalize all the spectral bounds given by Elphick and Wocjan to the quantum graph setting.
Our results are achieved using techniques from linear algebra and a complete definition of quantum graph coloring.
arXiv Detail & Related papers (2021-12-03T05:36:21Z) - Geometric properties of evolutionary graph states and their detection on
a quantum computer [0.0]
Geometric characteristics of graph states corresponding to a chain, a triangle, and a square are detected on the basis of calculations on IBM's quantum computer ibmq-manila.
arXiv Detail & Related papers (2021-08-29T20:31:37Z) - Hamiltonian systems, Toda lattices, Solitons, Lax Pairs on weighted
Z-graded graphs [62.997667081978825]
We identify conditions which allow one to lift one dimensional solutions to solutions on graphs.
We show that even for a simple example of a topologically interesting graph the corresponding non-trivial Lax pairs and associated unitary transformations do not lift to a Lax pair on the Z-graded graph.
arXiv Detail & Related papers (2020-08-11T17:58:13Z) - GraphOpt: Learning Optimization Models of Graph Formation [72.75384705298303]
We propose an end-to-end framework that learns an implicit model of graph structure formation and discovers an underlying optimization mechanism.
The learned objective can serve as an explanation for the observed graph properties, thereby lending itself to transfer across different graphs within a domain.
GraphOpt poses link formation in graphs as a sequential decision-making process and solves it using maximum entropy inverse reinforcement learning algorithm.
arXiv Detail & Related papers (2020-07-07T16:51:39Z) - Spectra of Perfect State Transfer Hamiltonians on Fractal-Like Graphs [62.997667081978825]
We study the spectral features, on fractal-like graphs, of Hamiltonians which exhibit the special property of perfect quantum state transfer.
The essential goal is to develop the theoretical framework for understanding the interplay between perfect quantum state transfer, spectral properties, and the geometry of the underlying graph.
arXiv Detail & Related papers (2020-03-25T02:46:14Z) - PBS-Calculus: A Graphical Language for Coherent Control of Quantum
Computations [77.34726150561087]
We introduce the PBS-calculus to represent and reason on quantum computations involving coherent control of quantum operations.
We equip the language with an equational theory, which is proved to be sound and complete.
We consider applications like the implementation of controlled permutations and the unrolling of loops.
arXiv Detail & Related papers (2020-02-21T16:15:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.