論文の概要: Hierarchical End-to-End Autonomous Driving: Integrating BEV Perception with Deep Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2409.17659v1
- Date: Thu, 26 Sep 2024 09:14:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-28 20:56:11.265466
- Title: Hierarchical End-to-End Autonomous Driving: Integrating BEV Perception with Deep Reinforcement Learning
- Title(参考訳): 階層型エンドツーエンド自動運転:BEV知覚と深層強化学習の統合
- Authors: Siyi Lu, Lei He, Shengbo Eben Li, Yugong Luo, Jianqiang Wang, Keqiang Li,
- Abstract要約: エンドツーエンドの自動運転は、従来のモジュラーパイプラインに代わる合理化された代替手段を提供する。
深層強化学習(Dep Reinforcement Learning, DRL)は、最近この分野で注目を集めている。
DRL特徴抽出ネットワークを認識フェーズに直接マッピングすることで、このギャップを埋める。
- 参考スコア(独自算出の注目度): 23.21761407287525
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: End-to-end autonomous driving offers a streamlined alternative to the traditional modular pipeline, integrating perception, prediction, and planning within a single framework. While Deep Reinforcement Learning (DRL) has recently gained traction in this domain, existing approaches often overlook the critical connection between feature extraction of DRL and perception. In this paper, we bridge this gap by mapping the DRL feature extraction network directly to the perception phase, enabling clearer interpretation through semantic segmentation. By leveraging Bird's-Eye-View (BEV) representations, we propose a novel DRL-based end-to-end driving framework that utilizes multi-sensor inputs to construct a unified three-dimensional understanding of the environment. This BEV-based system extracts and translates critical environmental features into high-level abstract states for DRL, facilitating more informed control. Extensive experimental evaluations demonstrate that our approach not only enhances interpretability but also significantly outperforms state-of-the-art methods in autonomous driving control tasks, reducing the collision rate by 20%.
- Abstract(参考訳): エンドツーエンドの自動運転は、従来のモジュールパイプラインに代わる合理化された代替手段を提供し、認識、予測、計画を単一のフレームワークに統合する。
深層強化学習(Dep Reinforcement Learning, DRL)は近年, この領域で注目を集めている。
本稿では,DRL特徴抽出ネットワークを認識フェーズに直接マッピングすることで,このギャップを埋める。
本研究では,Bird's-Eye-View(BEV)表現を活用することで,マルチセンサ入力を利用したDRLベースのエンドツーエンド駆動フレームワークを提案し,環境の統一的な3次元理解を構築する。
このBEVベースのシステムは、重要な環境特徴をDRLのための高レベルの抽象状態に抽出し、翻訳し、より情報的な制御を容易にする。
大規模実験により,本手法は解釈可能性を高めるだけでなく,自律走行制御タスクにおける最先端手法よりも優れ,衝突速度を20%低減することが示された。
関連論文リスト
- Learning Content-Aware Multi-Modal Joint Input Pruning via Bird's-Eye-View Representation [11.074747442071729]
本稿では,コンテンツ対応型マルチモーダルジョイントプルーニング手法を提案する。
我々は,NuScenesデータセットの広範な実験を通じて,アプローチの有効性を検証する。
論文 参考訳(メタデータ) (2024-10-09T03:30:00Z) - DiFSD: Ego-Centric Fully Sparse Paradigm with Uncertainty Denoising and Iterative Refinement for Efficient End-to-End Self-Driving [55.53171248839489]
我々は、エンドツーエンドの自動運転のためのエゴ中心の完全スパースパラダイムであるDiFSDを提案する。
特に、DiFSDは主にスパース知覚、階層的相互作用、反復的な運動プランナーから構成される。
nuScenesとBench2Driveデータセットで実施された実験は、DiFSDの優れた計画性能と優れた効率を実証している。
論文 参考訳(メタデータ) (2024-09-15T15:55:24Z) - An Examination of Offline-Trained Encoders in Vision-Based Deep Reinforcement Learning for Autonomous Driving [0.0]
部分観測可能なマルコフ決定過程(POMDP)における深層強化学習(DRL)の課題に関する研究
我々の研究は、オフラインで訓練されたエンコーダを用いて、自己教師付き学習を通じて大規模なビデオデータセットを活用し、一般化可能な表現を学習する。
CARLAシミュレータにおいて,BDD100Kの運転映像から得られた特徴を直接転送することで,車線追従や衝突回避を実現することができることを示す。
論文 参考訳(メタデータ) (2024-09-02T14:16:23Z) - Semantic Communication for Cooperative Perception using HARQ [51.148203799109304]
我々は重要セマンティック情報を抽出するために重要地図を活用し、協調的な知覚セマンティックコミュニケーションフレームワークを導入する。
周波数分割多重化(OFDM)とチャネル推定と等化戦略を併用して,時間変化によるマルチパスフェーディングによる課題に対処する。
我々は,ハイブリッド自動繰り返し要求(HARQ)の精神において,我々の意味コミュニケーションフレームワークと統合された新しい意味エラー検出手法を提案する。
論文 参考訳(メタデータ) (2024-08-29T08:53:26Z) - Hierarchical and Decoupled BEV Perception Learning Framework for Autonomous Driving [52.808273563372126]
本稿では,基本認識モジュールとユーザフレンドリなグラフィカルインタフェースのライブラリの提供を目的とした,新しい階層的BEV知覚パラダイムを提案する。
我々は,大規模公開データセットと合理化開発プロセスを効果的に活用するために,Pretrain-Finetune戦略を実行している。
また、マルチモジュールラーニング(MML)アプローチを提案し、複数のモデルの相乗的かつ反復的な訓練により性能を向上させる。
論文 参考訳(メタデータ) (2024-07-17T11:17:20Z) - Reason2Drive: Towards Interpretable and Chain-based Reasoning for Autonomous Driving [38.28159034562901]
Reason2Driveは600万以上のビデオテキストペアを備えたベンチマークデータセットである。
我々は、自律運転プロセスが知覚、予測、推論ステップの逐次的な組み合わせであると特徴付けている。
本稿では,自律システムにおける連鎖型推論性能を評価するための新しい集計評価指標を提案する。
論文 参考訳(メタデータ) (2023-12-06T18:32:33Z) - Interactive Autonomous Navigation with Internal State Inference and
Interactivity Estimation [58.21683603243387]
本稿では,関係時間的推論を伴う3つの補助的タスクを提案し,それらを標準のディープラーニングフレームワークに統合する。
これらの補助的なタスクは、他の対話的エージェントの行動パターンを推測するための追加の監視信号を提供する。
提案手法は,標準評価指標の観点から,頑健かつ最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-11-27T18:57:42Z) - DeepIPC: Deeply Integrated Perception and Control for an Autonomous Vehicle in Real Environments [7.642646077340124]
本稿では,自動運転に適した新しいエンドツーエンドモデルであるDeepIPCを紹介する。
DeepIPCは知覚と制御タスクをシームレスに統合する。
本評価は,DeepIPCの乾燥性およびマルチタスク効率において優れた性能を示すものである。
論文 参考訳(メタデータ) (2022-07-20T14:20:35Z) - Federated Deep Learning Meets Autonomous Vehicle Perception: Design and
Verification [168.67190934250868]
フェデレーテッド・ラーニング・パワード・コネクテッド・オートモービル(FLCAV)が提案されている。
FLCAVは通信とアノテーションのコストを削減しながらプライバシを保存する。
マルチステージトレーニングのためのネットワークリソースと道路センサのポーズを決定することは困難である。
論文 参考訳(メタデータ) (2022-06-03T23:55:45Z) - Vehicular Cooperative Perception Through Action Branching and Federated
Reinforcement Learning [101.64598586454571]
強化学習に基づく車両関連、リソースブロック(RB)割り当て、協調認識メッセージ(CPM)のコンテンツ選択を可能にする新しいフレームワークが提案されている。
車両全体のトレーニングプロセスをスピードアップするために、フェデレーションRLアプローチが導入されます。
その結果、フェデレーションRLはトレーニングプロセスを改善し、非フェデレーションアプローチと同じ時間内により良いポリシーを達成できることが示された。
論文 参考訳(メタデータ) (2020-12-07T02:09:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。