The VLLM Safety Paradox: Dual Ease in Jailbreak Attack and Defense
- URL: http://arxiv.org/abs/2411.08410v1
- Date: Wed, 13 Nov 2024 07:57:19 GMT
- Title: The VLLM Safety Paradox: Dual Ease in Jailbreak Attack and Defense
- Authors: Yangyang Guo, Fangkai Jiao, Liqiang Nie, Mohan Kankanhalli,
- Abstract summary: We investigate why Vision Large Language Models (VLLMs) are prone to jailbreak attacks.
We then make a key observation: existing defense mechanisms suffer from an textbfover-prudence problem.
We find that the two representative evaluation methods for jailbreak often exhibit chance agreement.
- Score: 56.32083100401117
- License:
- Abstract: The vulnerability of Vision Large Language Models (VLLMs) to jailbreak attacks appears as no surprise. However, recent defense mechanisms against these attacks have reached near-saturation performance on benchmarks, often with minimal effort. This simultaneous high performance in both attack and defense presents a perplexing paradox. Resolving it is critical for advancing the development of trustworthy models. To address this research gap, we first investigate why VLLMs are prone to these attacks. We then make a key observation: existing defense mechanisms suffer from an \textbf{over-prudence} problem, resulting in unexpected abstention even in the presence of benign inputs. Additionally, we find that the two representative evaluation methods for jailbreak often exhibit chance agreement. This limitation makes it potentially misleading when evaluating attack strategies or defense mechanisms. Beyond these empirical observations, our another contribution in this work is to repurpose the guardrails of LLMs on the shelf, as an effective alternative detector prior to VLLM response. We believe these findings offer useful insights to rethink the foundational development of VLLM safety with respect to benchmark datasets, evaluation methods, and defense strategies.
Related papers
- You Can't Eat Your Cake and Have It Too: The Performance Degradation of LLMs with Jailbreak Defense [34.023473699165315]
We study the utility degradation, safety elevation, and exaggerated-safety escalation of LLMs with jailbreak defense strategies.
We find that mainstream jailbreak defenses fail to ensure both safety and performance simultaneously.
arXiv Detail & Related papers (2025-01-21T15:24:29Z) - Shaping the Safety Boundaries: Understanding and Defending Against Jailbreaks in Large Language Models [59.25318174362368]
Jailbreaking in Large Language Models (LLMs) is a major security concern as it can deceive LLMs to generate harmful text.
We conduct a detailed analysis of seven different jailbreak methods and find that disagreements stem from insufficient observation samples.
We propose a novel defense called textbfActivation Boundary Defense (ABD), which adaptively constrains the activations within the safety boundary.
arXiv Detail & Related papers (2024-12-22T14:18:39Z) - The Great Contradiction Showdown: How Jailbreak and Stealth Wrestle in Vision-Language Models? [23.347349690954452]
Vision-Language Models (VLMs) have achieved remarkable performance on a variety of tasks, yet they remain vulnerable to jailbreak attacks.
We provide an information-theoretic framework for understanding the fundamental trade-off between the effectiveness of these attacks and their stealthiness.
We propose an efficient algorithm for detecting non-stealthy jailbreak attacks, offering significant improvements in model robustness.
arXiv Detail & Related papers (2024-10-02T11:40:49Z) - MoJE: Mixture of Jailbreak Experts, Naive Tabular Classifiers as Guard for Prompt Attacks [2.873719680183099]
This paper advocates for the significance of jailbreak attack prevention on Large Language Models (LLMs)
We introduce MoJE, a novel guardrail architecture designed to surpass current limitations in existing state-of-the-art guardrails.
MoJE excels in detecting jailbreak attacks while maintaining minimal computational overhead during model inference.
arXiv Detail & Related papers (2024-09-26T10:12:19Z) - Jailbreak Attacks and Defenses Against Large Language Models: A Survey [22.392989536664288]
Large Language Models (LLMs) have performed exceptionally in various text-generative tasks.
"jailbreaking" induces the model to generate malicious responses against the usage policy and society.
We propose a comprehensive and detailed taxonomy of jailbreak attack and defense methods.
arXiv Detail & Related papers (2024-07-05T06:57:30Z) - Raccoon: Prompt Extraction Benchmark of LLM-Integrated Applications [8.51254190797079]
We introduce the Raccoon benchmark which comprehensively evaluates a model's susceptibility to prompt extraction attacks.
Our novel evaluation method assesses models under both defenseless and defended scenarios.
Our findings highlight universal susceptibility to prompt theft in the absence of defenses, with OpenAI models demonstrating notable resilience when protected.
arXiv Detail & Related papers (2024-06-10T18:57:22Z) - AutoJailbreak: Exploring Jailbreak Attacks and Defenses through a Dependency Lens [83.08119913279488]
We present a systematic analysis of the dependency relationships in jailbreak attack and defense techniques.
We propose three comprehensive, automated, and logical frameworks.
We show that the proposed ensemble jailbreak attack and defense framework significantly outperforms existing research.
arXiv Detail & Related papers (2024-06-06T07:24:41Z) - Defensive Prompt Patch: A Robust and Interpretable Defense of LLMs against Jailbreak Attacks [59.46556573924901]
This paper introduces Defensive Prompt Patch (DPP), a novel prompt-based defense mechanism for large language models (LLMs)
Unlike previous approaches, DPP is designed to achieve a minimal Attack Success Rate (ASR) while preserving the high utility of LLMs.
Empirical results conducted on LLAMA-2-7B-Chat and Mistral-7B-Instruct-v0.2 models demonstrate the robustness and adaptability of DPP.
arXiv Detail & Related papers (2024-05-30T14:40:35Z) - Defending Large Language Models Against Jailbreaking Attacks Through Goal Prioritization [98.18718484152595]
We propose to integrate goal prioritization at both training and inference stages to counteract the intrinsic conflict between the goals of being helpful and ensuring safety.
Our work thus contributes to the comprehension of jailbreaking attacks and defenses, and sheds light on the relationship between LLMs' capability and safety.
arXiv Detail & Related papers (2023-11-15T16:42:29Z) - Jailbroken: How Does LLM Safety Training Fail? [92.8748773632051]
"jailbreak" attacks on early releases of ChatGPT elicit undesired behavior.
We investigate why such attacks succeed and how they can be created.
New attacks utilizing our failure modes succeed on every prompt in a collection of unsafe requests.
arXiv Detail & Related papers (2023-07-05T17:58:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.