論文の概要: Software Security Analysis in 2030 and Beyond: A Research Roadmap
- arxiv url: http://arxiv.org/abs/2409.17844v1
- Date: Thu, 26 Sep 2024 13:50:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-28 18:44:57.000372
- Title: Software Security Analysis in 2030 and Beyond: A Research Roadmap
- Title(参考訳): 2030年以降のソフトウェアセキュリティ分析 - 研究ロードマップ
- Authors: Marcel Böhme, Eric Bodden, Tevfik Bultan, Cristian Cadar, Yang Liu, Giuseppe Scanniello,
- Abstract要約: 我々は、機械が共同で書いたコードのセキュリティを評価し、最大化する新しい方法が必要である。
ソフトウェアシステムがますます異質になるにつれて、いくつかの関数が自動生成されても機能するアプローチが必要になります。
ソフトウェアセキュリティの最近の進歩を調査し、オープンな課題と機会について議論し、この分野の長期的な視点で結論付けることで、研究ロードマップをスタートさせます。
- 参考スコア(独自算出の注目度): 19.58506360935285
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As our lives, our businesses, and indeed our world economy become increasingly reliant on the secure operation of many interconnected software systems, the software engineering research community is faced with unprecedented research challenges, but also with exciting new opportunities. In this roadmap paper, we outline our vision of Software Security Analysis for the software systems of the future. Given the recent advances in generative AI, we need new methods to evaluate and maximize the security of code co-written by machines. As our software systems become increasingly heterogeneous, we need practical approaches that work even if some functions are automatically generated, e.g., by deep neural networks. As software systems depend evermore on the software supply chain, we need tools that scale to an entire ecosystem. What kind of vulnerabilities exist in future systems and how do we detect them? When all the shallow bugs are found, how do we discover vulnerabilities hidden deeply in the system? Assuming we cannot find all security flaws, how can we nevertheless protect our system? To answer these questions, we start our research roadmap with a survey of recent advances in software security, then discuss open challenges and opportunities, and conclude with a long-term perspective for the field.
- Abstract(参考訳): 私たちの生活、ビジネス、そして現実の世界経済は、多くの相互接続されたソフトウェアシステムの安全な運用にますます依存するようになり、ソフトウェアエンジニアリング研究コミュニティは前例のない研究課題に直面していますが、同時にエキサイティングな新しい機会にも直面しています。
本稿では,今後のソフトウェアシステムに対するソフトウェアセキュリティ分析のビジョンについて概説する。
生成AIの最近の進歩を考えると、機械が共同で書いたコードのセキュリティを評価し、最大化する新しい方法が必要である。
ソフトウェアシステムがますます異質になるにつれて、深いニューラルネットワークによって関数が自動生成されても動作する実践的なアプローチが必要になります。
ソフトウェアシステムはソフトウェアサプライチェーンに依存しているため、エコシステム全体にスケールするツールが必要です。
将来のシステムにどのような脆弱性が存在し、どのようにそれらを検出するのか?
浅いバグがすべて見つかったら、どうやってシステムに深く隠された脆弱性を見つけるのか?
すべてのセキュリティ欠陥が見つからないと仮定しても、システムを保護するにはどうすればいいのか?
これらの質問に答えるために、ソフトウェアセキュリティの最近の進歩を調査し、オープンな課題と機会について議論し、この分野の長期的な視点で結論付けることで、研究ロードマップを開始します。
関連論文リスト
- Safetywashing: Do AI Safety Benchmarks Actually Measure Safety Progress? [59.96471873997733]
我々は、より有意義な安全指標を開発するための実証的な基盤を提案し、機械学習研究の文脈でAIの安全性を定義する。
我々は、AI安全研究のためのより厳格なフレームワークを提供し、安全性評価の科学を前進させ、測定可能な進歩への道筋を明らかにすることを目指している。
論文 参考訳(メタデータ) (2024-07-31T17:59:24Z) - Open-world Machine Learning: A Review and New Outlooks [83.6401132743407]
本稿では,新たなオープンワールド機械学習パラダイムを包括的に紹介することを目的としている。
研究者がそれぞれの分野でより強力なAIシステムを構築するのを支援し、人工知能の開発を促進することを目的としている。
論文 参考訳(メタデータ) (2024-03-04T06:25:26Z) - Secure Software Development: Issues and Challenges [0.0]
生活のデジタル化は、人間の問題を解決し、生活の質を向上させることを証明する。
ハッカーたちは、無実の人々のデータを盗み、ID詐欺や詐欺など、そのほかの目的のために利用しようとしている。
セキュアなシステムソフトウェアの目的は、システムライフサイクルを実行することによって、そのようなエクスプロイトが決して起こらないようにすることです。
論文 参考訳(メタデータ) (2023-11-18T09:44:48Z) - Rust for Embedded Systems: Current State, Challenges and Open Problems (Extended Report) [6.414678578343769]
本稿では,組み込みシステムにRUSTを使用する際の現状と課題を総合的に理解するための,最初の体系的研究を行う。
さまざまなカテゴリにまたがる2,836のRUST組込みソフトウェアと5つの静的アプリケーションセキュリティテスト(SAST)ツールのデータセットを収集しました。
既存のRUSTソフトウェアサポートが不十分であること、SASTツールがRUST組み込みソフトウェアの特定の機能に対応できないこと、そして既存のRUSTソフトウェアにおける高度な型の導入が、相互運用可能なコードのエンジニアリングを困難にしていることを発見した。
論文 参考訳(メタデータ) (2023-11-08T23:59:32Z) - AI Maintenance: A Robustness Perspective [91.28724422822003]
我々は、AIライフサイクルにおけるロバストネスの課題を強調し、自動車のメンテナンスに類似させることで、AIのメンテナンスを動機付ける。
本稿では,ロバストネスリスクの検出と軽減を目的としたAIモデル検査フレームワークを提案する。
我々のAIメンテナンスの提案は、AIライフサイクル全体を通して堅牢性評価、状態追跡、リスクスキャン、モデル硬化、規制を促進する。
論文 参考訳(メタデータ) (2023-01-08T15:02:38Z) - Proceedings of the Artificial Intelligence for Cyber Security (AICS)
Workshop at AAAI 2022 [55.573187938617636]
ワークショップは、サイバーセキュリティの問題へのAIの適用に焦点を当てる。
サイバーシステムは大量のデータを生成し、これを効果的に活用することは人間の能力を超えます。
論文 参考訳(メタデータ) (2022-02-28T18:27:41Z) - Security for Machine Learning-based Software Systems: a survey of
threats, practices and challenges [0.76146285961466]
機械学習ベースのモダンソフトウェアシステム(MLBSS)を安全に開発する方法は、依然として大きな課題である。
潜伏中の脆弱性と、外部のユーザーや攻撃者に暴露されるプライバシー問題は、ほとんど無視され、特定が難しい。
機械学習ベースのソフトウェアシステムのセキュリティは、固有のシステム欠陥や外敵攻撃から生じる可能性があると考えている。
論文 参考訳(メタデータ) (2022-01-12T23:20:25Z) - Inspect, Understand, Overcome: A Survey of Practical Methods for AI
Safety [54.478842696269304]
安全クリティカルなアプリケーションにディープニューラルネットワーク(DNN)を使用することは、多数のモデル固有の欠点のために困難です。
近年,これらの安全対策を目的とした最先端技術動物園が出現している。
本稿は、機械学習の専門家と安全エンジニアの両方に対処する。
論文 参考訳(メタデータ) (2021-04-29T09:54:54Z) - A Research Ecosystem for Secure Computing [4.212354651854757]
コンピュータ、システム、アプリケーションのセキュリティは、コンピュータ科学における何十年にもわたって活発な研究領域であった。
課題は、情報エコシステムのセキュリティと信頼から、敵の人工知能や機械学習までさまざまだ。
新しいインセンティブと教育がこの変化の核心にある。
論文 参考訳(メタデータ) (2021-01-04T22:42:28Z) - Dos and Don'ts of Machine Learning in Computer Security [74.1816306998445]
大きな可能性にもかかわらず、セキュリティにおける機械学習は、パフォーマンスを損なう微妙な落とし穴を引き起こす傾向がある。
我々は,学習ベースのセキュリティシステムの設計,実装,評価において共通の落とし穴を特定する。
我々は,落とし穴の回避や軽減を支援するために,研究者を支援するための実用的な勧告を提案する。
論文 参考訳(メタデータ) (2020-10-19T13:09:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。