論文の概要: Graph Reasoning with Large Language Models via Pseudo-code Prompting
- arxiv url: http://arxiv.org/abs/2409.17906v1
- Date: Thu, 26 Sep 2024 14:52:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-28 17:03:54.357706
- Title: Graph Reasoning with Large Language Models via Pseudo-code Prompting
- Title(参考訳): Pseudo-code Promptingによる大規模言語モデルによるグラフ推論
- Authors: Konstantinos Skianis, Giannis Nikolentzos, Michalis Vazirgiannis,
- Abstract要約: 本稿では,グラフ問題の解法において,擬似コード命令によるプロンプトが大規模言語モデル(LLM)の性能を向上させるか否かを検討する。
実験により, 疑似符号命令を用いることで, 一般にLLMの性能が向上することが示された。
- 参考スコア(独自算出の注目度): 25.469214467011362
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) have recently achieved remarkable success in various reasoning tasks in the field of natural language processing. This success of LLMs has also motivated their use in graph-related tasks. Among others, recent work has explored whether LLMs can solve graph problems such as counting the number of connected components of a graph or computing the shortest path distance between two nodes. Although LLMs possess preliminary graph reasoning abilities, they might still struggle to solve some seemingly simple problems. In this paper, we investigate whether prompting via pseudo-code instructions can improve the performance of LLMs in solving graph problems. Our experiments demonstrate that using pseudo-code instructions generally improves the performance of all considered LLMs. The graphs, pseudo-code prompts, and evaluation code are publicly available.
- Abstract(参考訳): 大規模言語モデル(LLM)は近年,自然言語処理分野における様々な推論タスクにおいて顕著な成功を収めている。
LLMの成功は、グラフ関連のタスクでの使用も動機付けている。
LLMがグラフの連結成分数を数えたり、2つのノード間の最短経路距離を計算するといったグラフ問題を解くことができるかどうかを最近の研究で検討している。
LLMは予備的なグラフ推論能力を持っているが、一見単純な問題の解決に苦慮している。
本稿では,グラフ問題の解法において,擬似符号命令によるプロンプトがLLMの性能を向上させるか否かを検討する。
実験により、疑似符号命令を用いることで、LLMの全ての性能が向上することが示された。
グラフ、擬似コードプロンプト、評価コードが公開されている。
関連論文リスト
- Pseudocode-Injection Magic: Enabling LLMs to Tackle Graph Computational Tasks [15.69049038121735]
グラフ計算タスクは本質的に困難であり、しばしば効率的な解に対する高度なアルゴリズムを要求する。
既存のアプローチは、複雑なグラフ構造を理解するための大きな言語モデルの制限された能力によって制約される。
問題理解,迅速な設計,コード生成という3つの重要なステップから構成される新しいフレームワークであるPIEを紹介する。
論文 参考訳(メタデータ) (2025-01-23T15:04:22Z) - Reasoning with Graphs: Structuring Implicit Knowledge to Enhance LLMs Reasoning [73.2950349728376]
大規模言語モデル(LLM)は、幅広いタスクで顕著な成功を収めている。
しかし、彼らは情報片間の関係を理解し、推論する必要があるタスクの推論において、依然として課題に直面している。
この課題は、論理的推論やマルチホップ質問応答など、多段階プロセスに関わるタスクにおいて特に顕著である。
本稿では、まず文脈から明示的なグラフを構築することにより、グラフを用いた推論(RwG)を提案する。
論文 参考訳(メタデータ) (2025-01-14T05:18:20Z) - CodeGraph: Enhancing Graph Reasoning of LLMs with Code [43.79249671845997]
本稿では,グラフ問題の解をコードとしてエンコードするCodeGraphを紹介する。
CodeGraphは、大きな言語モデル内のグラフ推論タスクのパフォーマンスを1.3%から58.6%向上させることができる。
論文 参考訳(メタデータ) (2024-08-25T15:27:21Z) - Revisiting the Graph Reasoning Ability of Large Language Models: Case Studies in Translation, Connectivity and Shortest Path [53.71787069694794]
大規模言語モデル(LLM)のグラフ推論能力に着目する。
グラフ記述変換,グラフ接続,最短パス問題という3つの基本グラフタスクにおけるLLMの能力を再考する。
この結果から,LLMはテキスト記述によるグラフ構造理解に失敗し,これらの基本課題に対して様々な性能を示すことが可能であることが示唆された。
論文 参考訳(メタデータ) (2024-08-18T16:26:39Z) - Can LLM Graph Reasoning Generalize beyond Pattern Memorization? [46.93972334344908]
我々は,大規模言語モデル (LLM) が,合成学習データにおける意味的,数値的,構造的,推論パターンを超えうるか否かを評価し,実世界のグラフベースタスクにおける有用性を向上させる。
トレーニング後のアライメントが現実世界のタスクに最も有望であるのに対して、LLMグラフの推論をパターンを超えて行うことは、依然としてオープンな研究課題である。
論文 参考訳(メタデータ) (2024-06-23T02:59:15Z) - Graph Chain-of-Thought: Augmenting Large Language Models by Reasoning on Graphs [60.71360240206726]
大規模言語モデル(LLM)は、特に知識集約的なタスクにおいて幻覚に悩まされる。
既存の研究は、外部知識コーパスから取得した個々のテキスト単位でLLMを拡張することを提案する。
本稿では,グラフを反復的に推論することで,LLMをグラフで拡張するためのGraph Chain-of-thinkt (Graph-CoT) というフレームワークを提案する。
論文 参考訳(メタデータ) (2024-04-10T15:41:53Z) - Can Language Models Solve Graph Problems in Natural Language? [51.28850846990929]
大型言語モデル (LLM) は暗黙的なグラフィカル構造を持つ様々なタスクに採用されている。
自然言語をシミュレーションするグラフベース問題解決のベンチマークであるNLGraphを提案する。
論文 参考訳(メタデータ) (2023-05-17T08:29:21Z) - PAL: Program-aided Language Models [112.94785609781503]
自然言語問題を理解するために,プログラム支援言語モデル(PaL)を提案する。
PaLはソリューションステップをPythonインタプリタのようなプログラムランタイムにオフロードする。
私たちは12のベンチマークで新しい最先端の結果を設定しました。
論文 参考訳(メタデータ) (2022-11-18T18:56:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。