論文の概要: Reasoning with Graphs: Structuring Implicit Knowledge to Enhance LLMs Reasoning
- arxiv url: http://arxiv.org/abs/2501.07845v1
- Date: Tue, 14 Jan 2025 05:18:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-15 13:25:37.741212
- Title: Reasoning with Graphs: Structuring Implicit Knowledge to Enhance LLMs Reasoning
- Title(参考訳): グラフによる推論: LLMの推論を促進する不必要な知識の構造化
- Authors: Haoyu Han, Yaochen Xie, Hui Liu, Xianfeng Tang, Sreyashi Nag, William Headden, Hui Liu, Yang Li, Chen Luo, Shuiwang Ji, Qi He, Jiliang Tang,
- Abstract要約: 大規模言語モデル(LLM)は、幅広いタスクで顕著な成功を収めている。
しかし、彼らは情報片間の関係を理解し、推論する必要があるタスクの推論において、依然として課題に直面している。
この課題は、論理的推論やマルチホップ質問応答など、多段階プロセスに関わるタスクにおいて特に顕著である。
本稿では、まず文脈から明示的なグラフを構築することにより、グラフを用いた推論(RwG)を提案する。
- 参考スコア(独自算出の注目度): 73.2950349728376
- License:
- Abstract: Large language models (LLMs) have demonstrated remarkable success across a wide range of tasks; however, they still encounter challenges in reasoning tasks that require understanding and inferring relationships between distinct pieces of information within text sequences. This challenge is particularly pronounced in tasks involving multi-step processes, such as logical reasoning and multi-hop question answering, where understanding implicit relationships between entities and leveraging multi-hop connections in the given context are crucial. Graphs, as fundamental data structures, explicitly represent pairwise relationships between entities, thereby offering the potential to enhance LLMs' reasoning capabilities. External graphs have proven effective in supporting LLMs across multiple tasks. However, in many reasoning tasks, no pre-existing graph structure is provided. Can we structure implicit knowledge derived from context into graphs to assist LLMs in reasoning? In this paper, we propose Reasoning with Graphs (RwG) by first constructing explicit graphs from the context and then leveraging these graphs to enhance LLM reasoning performance on reasoning tasks. Extensive experiments demonstrate the effectiveness of the proposed method in improving both logical reasoning and multi-hop question answering tasks.
- Abstract(参考訳): 大規模言語モデル(LLM)は、幅広いタスクで顕著な成功を収めてきたが、テキストシーケンス内の異なる情報間の関係を理解し、推論する必要があるタスクの推論において、依然として課題に直面している。
この課題は、論理的推論やマルチホップ質問応答といった多段階プロセスに関わるタスクにおいて特に顕著であり、エンティティ間の暗黙的な関係の理解や、与えられたコンテキストにおけるマルチホップ接続の活用が不可欠である。
グラフは、基本的なデータ構造として、エンティティ間のペア関係を明確に表現し、LCMの推論能力を高める可能性を提供します。
外部グラフは複数のタスクでLLMをサポートするのに有効であることが証明されている。
しかし、多くの推論タスクでは、既存のグラフ構造は提供されない。
文脈から派生した暗黙の知識をグラフに構造化して推論におけるLLMを支援することができるか?
本稿では、まず文脈から明示的なグラフを構築し、次にこれらのグラフを活用して、推論タスクにおけるLCM推論性能を向上させることにより、グラフを用いた推論(RwG)を提案する。
論理的推論とマルチホップ質問応答の両課題を改善するために提案手法の有効性を実証した。
関連論文リスト
- Causal Graphs Meet Thoughts: Enhancing Complex Reasoning in Graph-Augmented LLMs [4.701165676405066]
関連情報を検索するだけでなく、因果推論や説明可能性の提供も重要である。
本稿では,大きな知識グラフをフィルタして原因効果エッジを強調する新しいパイプラインを提案する。
医学的質問応答タスクの実験では、一貫した利得を示し、最大10%の絶対的な改善がある。
論文 参考訳(メタデータ) (2025-01-24T19:31:06Z) - GRS-QA -- Graph Reasoning-Structured Question Answering Dataset [50.223851616680754]
グラフ推論-構造化質問応答データセット(GRS-QA)を導入する。
既存のM-QAデータセットとは異なり、GRS-QAは推論グラフを構築することで複雑な推論経路を明示的にキャプチャする。
実験により, LLMは, 様々な推論構造を用いて, 問合せ処理を行う際に, 異なる性能を示すことが明らかとなった。
論文 参考訳(メタデータ) (2024-11-01T05:14:03Z) - Debate on Graph: a Flexible and Reliable Reasoning Framework for Large Language Models [33.662269036173456]
大規模言語モデル(LLM)は、関連する知識の欠如により、現実世界の応用において幻覚に悩まされることがある。
KGQA(Knowledge Graph Question Answering)は、統合のための重要な手掛かりとなる。
LLMの対話型学習機能を活用してグラフ上での推論と議論を行う対話型KGQAフレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-05T01:11:58Z) - Revisiting the Graph Reasoning Ability of Large Language Models: Case Studies in Translation, Connectivity and Shortest Path [53.71787069694794]
大規模言語モデル(LLM)のグラフ推論能力に着目する。
グラフ記述変換,グラフ接続,最短パス問題という3つの基本グラフタスクにおけるLLMの能力を再考する。
この結果から,LLMはテキスト記述によるグラフ構造理解に失敗し,これらの基本課題に対して様々な性能を示すことが可能であることが示唆された。
論文 参考訳(メタデータ) (2024-08-18T16:26:39Z) - Can Graph Learning Improve Planning in LLM-based Agents? [61.47027387839096]
言語エージェントにおけるタスクプランニングは、大規模言語モデル(LLM)の開発とともに重要な研究トピックとして浮上している。
本稿では,課題計画のためのグラフ学習に基づく手法について検討する。
我々のグラフ学習への関心は、注意のバイアスと自己回帰的損失が、グラフ上の意思決定を効果的にナビゲートするLLMの能力を妨げているという理論的な発見に起因している。
論文 参考訳(メタデータ) (2024-05-29T14:26:24Z) - Logic Query of Thoughts: Guiding Large Language Models to Answer Complex Logic Queries with Knowledge Graphs [102.37496443389203]
LGOT(Logic-Query-of-Thoughts)は知識グラフ推論と大規模言語モデルを組み合わせた最初の方法である。
実験の結果,ChatGPTよりも20%向上した。
論文 参考訳(メタデータ) (2024-03-17T17:01:45Z) - Structure Guided Prompt: Instructing Large Language Model in Multi-Step
Reasoning by Exploring Graph Structure of the Text [44.81698187939784]
本稿では,大規模言語モデル(LLM)の多段階推論能力向上を目的としたフレームワークであるStructure Guided Promptを紹介する。
実験の結果,このフレームワークはLLMの推論能力を大幅に向上し,より広い範囲の自然言語シナリオを拡張できることがわかった。
論文 参考訳(メタデータ) (2024-02-20T22:56:23Z) - GraphReason: Enhancing Reasoning Capabilities of Large Language Models through A Graph-Based Verification Approach [0.0]
大きな言語モデル(LLM)は印象的な推論機能を示しています。
本稿では,LLMの推論能力をさらに向上するグラフベースの新しい手法を提案する。
論文 参考訳(メタデータ) (2023-08-18T03:12:59Z) - Can Language Models Solve Graph Problems in Natural Language? [51.28850846990929]
大型言語モデル (LLM) は暗黙的なグラフィカル構造を持つ様々なタスクに採用されている。
自然言語をシミュレーションするグラフベース問題解決のベンチマークであるNLGraphを提案する。
論文 参考訳(メタデータ) (2023-05-17T08:29:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。