WaSt-3D: Wasserstein-2 Distance for Scene-to-Scene Stylization on 3D Gaussians
- URL: http://arxiv.org/abs/2409.17917v1
- Date: Thu, 26 Sep 2024 15:02:50 GMT
- Title: WaSt-3D: Wasserstein-2 Distance for Scene-to-Scene Stylization on 3D Gaussians
- Authors: Dmytro Kotovenko, Olga Grebenkova, Nikolaos Sarafianos, Avinash Paliwal, Pingchuan Ma, Omid Poursaeed, Sreyas Mohan, Yuchen Fan, Yilei Li, Rakesh Ranjan, Björn Ommer,
- Abstract summary: We develop a new style transfer method for 3D scenes called WaSt-3D.
It faithfully transfers details from style scenes to the content scene without requiring any training.
WaSt-3D consistently delivers results across diverse content and style scenes without necessitating any training.
- Score: 37.139479729087896
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: While style transfer techniques have been well-developed for 2D image stylization, the extension of these methods to 3D scenes remains relatively unexplored. Existing approaches demonstrate proficiency in transferring colors and textures but often struggle with replicating the geometry of the scenes. In our work, we leverage an explicit Gaussian Splatting (GS) representation and directly match the distributions of Gaussians between style and content scenes using the Earth Mover's Distance (EMD). By employing the entropy-regularized Wasserstein-2 distance, we ensure that the transformation maintains spatial smoothness. Additionally, we decompose the scene stylization problem into smaller chunks to enhance efficiency. This paradigm shift reframes stylization from a pure generative process driven by latent space losses to an explicit matching of distributions between two Gaussian representations. Our method achieves high-resolution 3D stylization by faithfully transferring details from 3D style scenes onto the content scene. Furthermore, WaSt-3D consistently delivers results across diverse content and style scenes without necessitating any training, as it relies solely on optimization-based techniques. See our project page for additional results and source code: $\href{https://compvis.github.io/wast3d/}{https://compvis.github.io/wast3d/}$.
Related papers
- StyleSplat: 3D Object Style Transfer with Gaussian Splatting [0.3374875022248866]
Style transfer can enhance 3D assets with diverse artistic styles, transforming creative expression.
We introduce StyleSplat, a method for stylizing 3D objects in scenes represented by 3D Gaussians from reference style images.
We demonstrate its effectiveness across various 3D scenes and styles, showcasing enhanced control and customization in 3D creation.
arXiv Detail & Related papers (2024-07-12T17:55:08Z) - LoopGaussian: Creating 3D Cinemagraph with Multi-view Images via Eulerian Motion Field [13.815932949774858]
Cinemagraph is a form of visual media that combines elements of still photography and subtle motion to create a captivating experience.
We propose LoopGaussian to elevate cinemagraph from 2D image space to 3D space using 3D Gaussian modeling.
Experiment results validate the effectiveness of our approach, demonstrating high-quality and visually appealing scene generation.
arXiv Detail & Related papers (2024-04-13T11:07:53Z) - Sketch3D: Style-Consistent Guidance for Sketch-to-3D Generation [55.73399465968594]
This paper proposes a novel generation paradigm Sketch3D to generate realistic 3D assets with shape aligned with the input sketch and color matching the textual description.
Three strategies are designed to optimize 3D Gaussians, i.e., structural optimization via a distribution transfer mechanism, color optimization with a straightforward MSE loss and sketch similarity optimization with a CLIP-based geometric similarity loss.
arXiv Detail & Related papers (2024-04-02T11:03:24Z) - HUGS: Holistic Urban 3D Scene Understanding via Gaussian Splatting [53.6394928681237]
holistic understanding of urban scenes based on RGB images is a challenging yet important problem.
Our main idea involves the joint optimization of geometry, appearance, semantics, and motion using a combination of static and dynamic 3D Gaussians.
Our approach offers the ability to render new viewpoints in real-time, yielding 2D and 3D semantic information with high accuracy.
arXiv Detail & Related papers (2024-03-19T13:39:05Z) - Bridging 3D Gaussian and Mesh for Freeview Video Rendering [57.21847030980905]
GauMesh bridges the 3D Gaussian and Mesh for modeling and rendering the dynamic scenes.
We show that our approach adapts the appropriate type of primitives to represent the different parts of the dynamic scene.
arXiv Detail & Related papers (2024-03-18T04:01:26Z) - StyleGaussian: Instant 3D Style Transfer with Gaussian Splatting [141.05924680451804]
StyleGaussian is a novel 3D style transfer technique.
It allows instant transfer of any image's style to a 3D scene at 10 frames per second (fps)
arXiv Detail & Related papers (2024-03-12T16:44:52Z) - Compact 3D Scene Representation via Self-Organizing Gaussian Grids [10.816451552362823]
3D Gaussian Splatting has recently emerged as a highly promising technique for modeling of static 3D scenes.
We introduce a compact scene representation organizing the parameters of 3DGS into a 2D grid with local homogeneity.
Our method achieves a reduction factor of 17x to 42x in size for complex scenes with no increase in training time.
arXiv Detail & Related papers (2023-12-19T20:18:29Z) - Text-to-3D using Gaussian Splatting [18.163413810199234]
This paper proposes GSGEN, a novel method that adopts Gaussian Splatting, a recent state-of-the-art representation, to text-to-3D generation.
GSGEN aims at generating high-quality 3D objects and addressing existing shortcomings by exploiting the explicit nature of Gaussian Splatting.
Our approach can generate 3D assets with delicate details and accurate geometry.
arXiv Detail & Related papers (2023-09-28T16:44:31Z) - Geometric Correspondence Fields: Learned Differentiable Rendering for 3D
Pose Refinement in the Wild [96.09941542587865]
We present a novel 3D pose refinement approach based on differentiable rendering for objects of arbitrary categories in the wild.
In this way, we precisely align 3D models to objects in RGB images which results in significantly improved 3D pose estimates.
We evaluate our approach on the challenging Pix3D dataset and achieve up to 55% relative improvement compared to state-of-the-art refinement methods in multiple metrics.
arXiv Detail & Related papers (2020-07-17T12:34:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.