Intelligent Energy Management: Remaining Useful Life Prediction and
Charging Automation System Comprised of Deep Learning and the Internet of
Things
- URL: http://arxiv.org/abs/2409.17931v1
- Date: Thu, 26 Sep 2024 15:08:38 GMT
- Title: Intelligent Energy Management: Remaining Useful Life Prediction and
Charging Automation System Comprised of Deep Learning and the Internet of
Things
- Authors: Biplov Paneru, Bishwash Paneru, DP Sharma Mainali
- Abstract summary: Remaining Useful Life (RUL) of battery is an important parameter to know the battery's remaining life and need for recharge.
The goal of this research project is to develop machine learning-based models for the battery RUL dataset.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Remaining Useful Life (RUL) of battery is an important parameter to know the
battery's remaining life and need for recharge. The goal of this research
project is to develop machine learning-based models for the battery RUL
dataset. Different ML models are developed to classify the RUL of the vehicle,
and the IoT (Internet of Things) concept is simulated for automating the
charging system and managing any faults aligning. The graphs plotted depict the
relationship between various vehicle parameters using the Blynk IoT platform.
Results show that the catboost, Multi-Layer Perceptron (MLP), Gated Recurrent
Unit (GRU), and hybrid model developed could classify RUL into three classes
with 99% more accuracy. The data is fed using the tkinter GUI for simulating
artificial intelligence (AI)-based charging, and with a pyserial backend, data
can be entered into the Esp-32 microcontroller for making charge discharge
possible with the model's predictions. Also, with an IoT system, the charging
can be disconnected, monitored, and analyzed for automation. The results show
that an accuracy of 99% can be obtained on models MLP, catboost model and
similar accuracy on GRU model can be obtained, and finally relay-based
triggering can be made by prediction through the model used for automating the
charging and energy-saving mechanism. By showcasing an exemplary Blynk
platform-based monitoring and automation phenomenon, we further present
innovative ways of monitoring parameters and automating the system.
Related papers
- Automatic AI Model Selection for Wireless Systems: Online Learning via Digital Twinning [50.332027356848094]
AI-based applications are deployed at intelligent controllers to carry out functionalities like scheduling or power control.
The mapping between context and AI model parameters is ideally done in a zero-shot fashion.
This paper introduces a general methodology for the online optimization of AMS mappings.
arXiv Detail & Related papers (2024-06-22T11:17:50Z) - SAM-RL: Sensing-Aware Model-Based Reinforcement Learning via
Differentiable Physics-Based Simulation and Rendering [49.78647219715034]
We propose a sensing-aware model-based reinforcement learning system called SAM-RL.
With the sensing-aware learning pipeline, SAM-RL allows a robot to select an informative viewpoint to monitor the task process.
We apply our framework to real world experiments for accomplishing three manipulation tasks: robotic assembly, tool manipulation, and deformable object manipulation.
arXiv Detail & Related papers (2022-10-27T05:30:43Z) - Real-to-Sim: Predicting Residual Errors of Robotic Systems with Sparse
Data using a Learning-based Unscented Kalman Filter [65.93205328894608]
We learn the residual errors between a dynamic and/or simulator model and the real robot.
We show that with the learned residual errors, we can further close the reality gap between dynamic models, simulations, and actual hardware.
arXiv Detail & Related papers (2022-09-07T15:15:12Z) - Pretraining Graph Neural Networks for few-shot Analog Circuit Modeling
and Design [68.1682448368636]
We present a supervised pretraining approach to learn circuit representations that can be adapted to new unseen topologies or unseen prediction tasks.
To cope with the variable topological structure of different circuits we describe each circuit as a graph and use graph neural networks (GNNs) to learn node embeddings.
We show that pretraining GNNs on prediction of output node voltages can encourage learning representations that can be adapted to new unseen topologies or prediction of new circuit level properties.
arXiv Detail & Related papers (2022-03-29T21:18:47Z) - Automated Few-Shot Time Series Forecasting based on Bi-level Programming [5.760976250387322]
This paper develops a BiLO-Auto-TSF/ML framework that automates the optimal design of a few-shot learning pipeline from a bi-level programming perspective.
Comprehensive experiments fully demonstrate the effectiveness of our proposed BiLO-Auto-TSF/ML framework.
arXiv Detail & Related papers (2022-03-07T12:15:14Z) - KNODE-MPC: A Knowledge-based Data-driven Predictive Control Framework
for Aerial Robots [5.897728689802829]
We make use of a deep learning tool, knowledge-based neural ordinary differential equations (KNODE), to augment a model obtained from first principles.
The resulting hybrid model encompasses both a nominal first-principle model and a neural network learnt from simulated or real-world experimental data.
To improve closed-loop performance, the hybrid model is integrated into a novel MPC framework, known as KNODE-MPC.
arXiv Detail & Related papers (2021-09-10T12:09:18Z) - Semi-supervised on-device neural network adaptation for remote and
portable laser-induced breakdown spectroscopy [0.22843885788439797]
We introduce a lightweight multi-layer perceptron (MLP) model for LIBS that can be adapted on-device without requiring labels for new input data.
It shows 89.3% average accuracy during data streaming, and up to 2.1% better accuracy compared to an model that does not support adaptation.
arXiv Detail & Related papers (2021-04-08T00:20:36Z) - Battery Model Calibration with Deep Reinforcement Learning [5.004835203025507]
We implement a Reinforcement Learning-based framework for reliably and efficiently inferring calibration parameters of battery models.
The framework enables real-time inference of the computational model parameters in order to compensate the reality-gap from the observations.
arXiv Detail & Related papers (2020-12-07T19:26:08Z) - Iterative Semi-parametric Dynamics Model Learning For Autonomous Racing [2.40966076588569]
We develop and apply an iterative learning semi-parametric model, with a neural network, to the task of autonomous racing.
We show that our model can learn more accurately than a purely parametric model and generalize better than a purely non-parametric model.
arXiv Detail & Related papers (2020-11-17T16:24:10Z) - Universal Battery Performance and Degradation Model for Electric
Aircraft [52.77024349608834]
Design, analysis, and operation of electric vertical takeoff and landing aircraft (eVTOLs) requires fast and accurate prediction of Li-ion battery performance.
We generate a battery performance and thermal behavior dataset specific to eVTOL duty cycles.
We use this dataset to develop a battery performance and degradation model (Cellfit) which employs physics-informed machine learning.
arXiv Detail & Related papers (2020-07-06T16:10:54Z) - Fast, Accurate, and Simple Models for Tabular Data via Augmented
Distillation [97.42894942391575]
We propose FAST-DAD to distill arbitrarily complex ensemble predictors into individual models like boosted trees, random forests, and deep networks.
Our individual distilled models are over 10x faster and more accurate than ensemble predictors produced by AutoML tools like H2O/AutoSklearn.
arXiv Detail & Related papers (2020-06-25T09:57:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.