DLinear-based Prediction of Remaining Useful Life of Lithium-Ion Batteries: Feature Engineering through Explainable Artificial Intelligence
- URL: http://arxiv.org/abs/2501.11542v1
- Date: Mon, 20 Jan 2025 15:28:20 GMT
- Title: DLinear-based Prediction of Remaining Useful Life of Lithium-Ion Batteries: Feature Engineering through Explainable Artificial Intelligence
- Authors: Minsu Kim, Jaehyun Oh, Sang-Young Lee, Junghwan Kim,
- Abstract summary: The Remaining Useful Life (RUL) of lithium-ion batteries is essential for ensuring safety, reducing maintenance costs, and optimizing usage.
This study introduces an accurate RUL prediction approach based on feature engineering and DLinear, applied to the dataset from NASA's Prognostics Center of Excellence.
- Score: 21.867940190460704
- License:
- Abstract: Accurate prediction of the Remaining Useful Life (RUL) of lithium-ion batteries is essential for ensuring safety, reducing maintenance costs, and optimizing usage. However, predicting RUL is challenging due to the nonlinear characteristics of the degradation caused by complex chemical reactions. Machine learning allows precise predictions by learning the latent functions of degradation relationships based on cycling behavior. This study introduces an accurate RUL prediction approach based on feature engineering and DLinear, applied to the dataset from NASA's Prognostics Center of Excellence. Among the 20 features generated from current, voltage, temperature, and time provided in this dataset, key features contributing to degradation are selected using Pearson correlation coefficient and Shapley values. Shapley value-based feature selection effectively reflects cell-to-cell variability, showing similar importance rankings across all cells. The DLinear-based RUL prediction using key features efficiently captures the time-series trend, demonstrating significantly better performance compared to Long Short-Term Memory and Transformer models.
Related papers
- Remaining Useful Life Prediction for Batteries Utilizing an Explainable AI Approach with a Predictive Application for Decision-Making [0.0]
We develop machine learning-based models to predict and classify battery RUL.
The proposed TLE model consistently outperforms baseline models in RMSE, MAE, and R squared error.
XGBoost achieves an impressive 99% classification accuracy, validated through cross-validation techniques.
arXiv Detail & Related papers (2024-09-26T15:08:38Z) - Battery GraphNets : Relational Learning for Lithium-ion Batteries(LiBs) Life Estimation [0.0]
We present the Battery GraphNets framework that jointly learns to incorporate a discrete dependency graph structure between battery parameters.
The proposed method outperforms several popular methods by a significant margin on publicly available battery datasets and achieves SOTA performance.
arXiv Detail & Related papers (2024-08-14T15:44:56Z) - Generating Comprehensive Lithium Battery Charging Data with Generative AI [24.469319419012745]
This study introduces the End of Life (EOL) and Equivalent Cycle Life (ECL) as conditions for generative AI models.
By integrating an embedding layer into the CVAE model, we developed the Refined Conditional Variational Autoencoder (RCVAE)
Through preprocessing data into a quasi-video format, our study achieves an integrated synthesis of electrochemical data, including voltage, current, temperature, and charging capacity.
This method provides users with a comprehensive electrochemical dataset, pioneering a new research domain for the artificial synthesis of lithium battery data.
arXiv Detail & Related papers (2024-04-11T09:08:45Z) - TRIAGE: Characterizing and auditing training data for improved
regression [80.11415390605215]
We introduce TRIAGE, a novel data characterization framework tailored to regression tasks and compatible with a broad class of regressors.
TRIAGE utilizes conformal predictive distributions to provide a model-agnostic scoring method, the TRIAGE score.
We show that TRIAGE's characterization is consistent and highlight its utility to improve performance via data sculpting/filtering, in multiple regression settings.
arXiv Detail & Related papers (2023-10-29T10:31:59Z) - Robust Learning with Progressive Data Expansion Against Spurious
Correlation [65.83104529677234]
We study the learning process of a two-layer nonlinear convolutional neural network in the presence of spurious features.
Our analysis suggests that imbalanced data groups and easily learnable spurious features can lead to the dominance of spurious features during the learning process.
We propose a new training algorithm called PDE that efficiently enhances the model's robustness for a better worst-group performance.
arXiv Detail & Related papers (2023-06-08T05:44:06Z) - Interpretable Battery Cycle Life Range Prediction Using Early
Degradation Data at Cell Level [0.8137198664755597]
Quantile Regression Forest (QRF) model is introduced to make cycle life range prediction with uncertainty quantified.
Data-driven methods have been proposed for point prediction of battery cycle life with minimum knowledge of the battery degradation mechanisms.
The interpretability of the final QRF model is explored with two global model-agnostic methods.
arXiv Detail & Related papers (2022-04-26T16:26:27Z) - Regularization-based Continual Learning for Fault Prediction in
Lithium-Ion Batteries [0.0]
An early prediction and robust understanding of battery faults could greatly increase product quality.
Current approaches for data-driven fault prediction provide good results on the exact processes they were trained on.
Continual learning promises such flexibility, allowing for an automatic adaption of previously learnt knowledge to new tasks.
arXiv Detail & Related papers (2021-07-07T16:24:18Z) - Learning representations with end-to-end models for improved remaining
useful life prognostics [64.80885001058572]
The remaining Useful Life (RUL) of equipment is defined as the duration between the current time and its failure.
We propose an end-to-end deep learning model based on multi-layer perceptron and long short-term memory layers (LSTM) to predict the RUL.
We will discuss how the proposed end-to-end model is able to achieve such good results and compare it to other deep learning and state-of-the-art methods.
arXiv Detail & Related papers (2021-04-11T16:45:18Z) - Uncertainty-aware Remaining Useful Life predictor [57.74855412811814]
Remaining Useful Life (RUL) estimation is the problem of inferring how long a certain industrial asset can be expected to operate.
In this work, we consider Deep Gaussian Processes (DGPs) as possible solutions to the aforementioned limitations.
The performance of the algorithms is evaluated on the N-CMAPSS dataset from NASA for aircraft engines.
arXiv Detail & Related papers (2021-04-08T08:50:44Z) - Learning summary features of time series for likelihood free inference [93.08098361687722]
We present a data-driven strategy for automatically learning summary features from time series data.
Our results indicate that learning summary features from data can compete and even outperform LFI methods based on hand-crafted values.
arXiv Detail & Related papers (2020-12-04T19:21:37Z) - Universal Battery Performance and Degradation Model for Electric
Aircraft [52.77024349608834]
Design, analysis, and operation of electric vertical takeoff and landing aircraft (eVTOLs) requires fast and accurate prediction of Li-ion battery performance.
We generate a battery performance and thermal behavior dataset specific to eVTOL duty cycles.
We use this dataset to develop a battery performance and degradation model (Cellfit) which employs physics-informed machine learning.
arXiv Detail & Related papers (2020-07-06T16:10:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.