Formal verification of higher dimensional quantum protocols
- URL: http://arxiv.org/abs/2409.17980v1
- Date: Thu, 26 Sep 2024 15:53:14 GMT
- Title: Formal verification of higher dimensional quantum protocols
- Authors: Ittoop Vergheese Puthoor,
- Abstract summary: We present our preliminary results in extending the theory of behavioural equivalence in CQP to verify higher dimensional quantum protocols using qudits.
This is a work-in-progress and we present our preliminary results in extending the theory of behavioural equivalence in CQP to verify higher dimensional quantum protocols using qudits.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Formal methods have been a successful approach for modelling and verifying the correctness of complex technologies like microprocessor chip design, biological systems and others. This is the main motivation of developing quantum formal techniques which is to describe and analyse quantum information processing systems. Our previous work demonstrates the possibility of using a quantum process calculus called Communicating Quantum Processes (CQP) to model and describe higher dimensional quantum systems. By developing the theory to generalise the fundamental gates and Bell states, we have modelled quantum qudit protocols like teleportation and superdense coding in CQP. In this paper, we demonstrate the use of CQP to analyse higher dimensional quantum protocols. The main idea is to define two processes, one modelling the real protocol and the other expressing a specification, and prove that they are behaviourally equivalent. This is a work-in-progress and we present our preliminary results in extending the theory of behavioural equivalence in CQP to verify higher dimensional quantum protocols using qudits.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Quantum Computation Using Large Spin Qudits [0.0]
dissertation explores quantum computation using qudits encoded into large spins.
First, we delve into the generation of high-fidelity universal gate sets for quantum computation with qudits.
Next, we analyze schemes to encode a qubit in the large spin qudits for fault-tolerant quantum computation.
arXiv Detail & Related papers (2024-05-13T16:19:31Z) - Equivalence Checking of Parameterised Quantum Circuits [13.796569260568939]
We propose a novel compact representation for PQCs based on tensor decision diagrams.
We present an algorithm for verifying PQC equivalence without the need for instantiation.
arXiv Detail & Related papers (2024-04-29T06:25:00Z) - Peptide Binding Classification on Quantum Computers [3.9540968630765643]
We conduct an extensive study on using near-term quantum computers for a task in the domain of computational biology.
We perform sequence classification on a task relevant to the design of therapeutic proteins, and find competitive performance with classical baselines of similar scale.
This work constitutes the first proof-of-concept application of near-term quantum computing to a task critical to the design of therapeutic proteins.
arXiv Detail & Related papers (2023-11-27T10:32:31Z) - Quantum Imitation Learning [74.15588381240795]
We propose quantum imitation learning (QIL) with a hope to utilize quantum advantage to speed up IL.
We develop two QIL algorithms, quantum behavioural cloning (Q-BC) and quantum generative adversarial imitation learning (Q-GAIL)
Experiment results demonstrate that both Q-BC and Q-GAIL can achieve comparable performance compared to classical counterparts.
arXiv Detail & Related papers (2023-04-04T12:47:35Z) - Quantifying protocol efficiency: a thermodynamic figure of merit for
classical and quantum state-transfer protocols [0.0]
We focus on classical and quantum protocols transferring a state across a double-well potential.
The classical protocols are achieved by deforming the potential, while the quantum ones are assisted by a counter-diabatic driving.
We show that quantum protocols perform more quickly and accurately.
arXiv Detail & Related papers (2022-12-20T09:19:51Z) - Interactive Protocols for Classically-Verifiable Quantum Advantage [46.093185827838035]
"Interactions" between a prover and a verifier can bridge the gap between verifiability and implementation.
We demonstrate the first implementation of an interactive quantum advantage protocol, using an ion trap quantum computer.
arXiv Detail & Related papers (2021-12-09T19:00:00Z) - LQP: The Dynamic Logic of Quantum Information [77.34726150561087]
This paper introduces a dynamic logic formalism for reasoning about information flow in composite quantum systems.
We present a finitary syntax, a relational semantics and a sound proof system for this logic.
As applications, we use our system to give formal correctness for the Teleportation protocol and for a standard Quantum Secret Sharing protocol.
arXiv Detail & Related papers (2021-10-04T12:20:23Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
We devise three effective QAE-based learning protocols to address three classically computational hard learning problems.
Our work sheds new light on developing advanced quantum learning algorithms to accomplish hard quantum physics and quantum information processing tasks.
arXiv Detail & Related papers (2021-06-29T14:01:40Z) - An extended quantum process algebra (eQPAlg) approach for distributed
quantum systems [0.0]
We have expounded the communication procedure of quantum systems by means of process algebra.
The main objective of our research effort is to formally represent the communication between distributed quantum systems.
arXiv Detail & Related papers (2020-01-06T11:02:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.