論文の概要: CRoP: Context-wise Robust Static Human-Sensing Personalization
- arxiv url: http://arxiv.org/abs/2409.17994v1
- Date: Thu, 26 Sep 2024 16:06:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-28 16:26:02.145963
- Title: CRoP: Context-wise Robust Static Human-Sensing Personalization
- Title(参考訳): CRoP: コンテキストワイドロバストな静的人間センシングパーソナライゼーション
- Authors: Sawinder Kaur, Avery Gump, Jingyu Xin, Yi Xiao, Harshit Sharma, Nina R Benway, Jonathan L Preston, Asif Salekin,
- Abstract要約: CRoPは、市販の事前学習モデルとプルーニングを用いて、パーソナライズと一般化を最適化する新しい静的パーソナライズ手法である。
CRoPは、現実世界の2つの健康ドメインを含む4つの人間センシングデータセットにおいて、パーソナライズ効果とユーザ内ロバスト性に優れる。
- 参考スコア(独自算出の注目度): 7.303478793193849
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The advancement in deep learning and internet-of-things have led to diverse human sensing applications. However, distinct patterns in human sensing, influenced by various factors or contexts, challenge generic neural network model's performance due to natural distribution shifts. To address this, personalization tailors models to individual users. Yet most personalization studies overlook intra-user heterogeneity across contexts in sensory data, limiting intra-user generalizability. This limitation is especially critical in clinical applications, where limited data availability hampers both generalizability and personalization. Notably, intra-user sensing attributes are expected to change due to external factors such as treatment progression, further complicating the challenges.This work introduces CRoP, a novel static personalization approach using an off-the-shelf pre-trained model and pruning to optimize personalization and generalization. CRoP shows superior personalization effectiveness and intra-user robustness across four human-sensing datasets, including two from real-world health domains, highlighting its practical and social impact. Additionally, to support CRoP's generalization ability and design choices, we provide empirical justification through gradient inner product analysis, ablation studies, and comparisons against state-of-the-art baselines.
- Abstract(参考訳): ディープラーニングとモノのインターネットの進歩は、多様な人間のセンシングアプリケーションに繋がった。
しかし、様々な要因や文脈の影響を受けながら、人間の知覚の異なるパターンは、自然分布シフトによるジェネリックニューラルネットワークモデルの性能に挑戦する。
これを解決するために、パーソナライゼーションは個々のユーザーに対してモデルをカスタマイズする。
しかし、ほとんどのパーソナライゼーション研究は、ユーザ内一般化性を制限する、感覚データのコンテキストにおけるユーザ内不均一性を見落としている。
この制限は、一般化可能性とパーソナライゼーションの両方を損なう限られたデータ可用性を損なう臨床応用において特に重要である。
本研究は,市販の事前学習モデルを用いた新しい静的パーソナライズ手法であるCRoPを導入し,パーソナライズと一般化を最適化するためにプルーニングを行う。
CRoPは、実際の健康ドメインの2つを含む4つの人間センシングデータセットにおいて、パーソナライズ効果とユーザ内ロバスト性に優れており、その実用的および社会的影響を強調している。
さらに、CRoPの一般化能力と設計選択を支援するために、勾配内積分析、アブレーション研究、最先端のベースラインとの比較を通じて経験的正当化を提供する。
関連論文リスト
- Preserving Individuality while Following the Crowd: Understanding the Role of User Taste and Crowd Wisdom in Online Product Rating Prediction [31.42047941275096]
ユーザレベルでも製品レベルでも,歴史的評価を重視したユニークな,実践的なアプローチを提案する。
このアプローチを高度にスケーラブルで容易にデプロイ可能な,効率的なデータ処理戦略を開発しました。
論文 参考訳(メタデータ) (2024-09-06T23:16:06Z) - Idiographic Personality Gaussian Process for Psychological Assessment [7.394943089551214]
本稿では,長期間にわたる議論に対処するため,ガウス過程のコリージョン化モデルに基づく新しい測定フレームワークを開発する。
本稿では,個体群間の共有形質構造と,個体群に対する「イディオグラフィー」偏差を両立する中間モデルであるIPGP(idiographic personality Gaussian process)の枠組みを提案する。
論文 参考訳(メタデータ) (2024-07-06T06:09:04Z) - Causality and Independence Enhancement for Biased Node Classification [56.38828085943763]
各種グラフニューラルネットワーク(GNN)に適用可能な新しい因果性・独立性向上(CIE)フレームワークを提案する。
提案手法は,ノード表現レベルでの因果的特徴と突発的特徴を推定し,突発的相関の影響を緩和する。
我々のアプローチCIEは、GNNの性能を大幅に向上するだけでなく、最先端の debiased ノード分類法よりも優れています。
論文 参考訳(メタデータ) (2023-10-14T13:56:24Z) - Understanding Robust Overfitting from the Feature Generalization Perspective [61.770805867606796]
逆行訓練(AT)は、逆行摂動を自然データに組み込むことで、堅牢なニューラルネットワークを構築する。
これはロバストオーバーフィッティング(RO)の問題に悩まされ、モデルのロバスト性を著しく損なう。
本稿では,新しい特徴一般化の観点からROを考察する。
論文 参考訳(メタデータ) (2023-10-01T07:57:03Z) - Dataset Bias in Human Activity Recognition [57.91018542715725]
このコントリビューションは、トレーニングデータを統計的にキュレートし、人間の身体的特性がHARのパフォーマンスにどの程度影響するかを評価する。
時系列HARのセンサ,アクティビティ,記録の異なる2つのHARデータセット上で,最先端の畳み込みニューラルネットワークの性能を評価する。
論文 参考訳(メタデータ) (2023-01-19T12:33:50Z) - Improving Personality Consistency in Conversation by Persona Extending [22.124187337032946]
本稿では,Persona Retrieval Model(PRM)とPosterior-Scored Transformer(PS-Transformer)の2つのサブコンポーネントからなる新しい検索・予測パラダイムを提案する。
提案モデルでは,自動測定と人的評価の両面で大幅に改善されている。
論文 参考訳(メタデータ) (2022-08-23T09:00:58Z) - Partial sensitivity analysis in differential privacy [58.730520380312676]
それぞれの入力特徴が個人のプライバシ損失に与える影響について検討する。
プライベートデータベース上でのクエリに対する我々のアプローチを実験的に評価する。
また、合成データにおけるニューラルネットワークトレーニングの文脈における知見についても検討する。
論文 参考訳(メタデータ) (2021-09-22T08:29:16Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
本稿では,新しいコントラスト型正規化臨床分類モデルを提案する。
EHRデータに特化した2つのユニークなポジティブサンプリング戦略を紹介します。
私たちのフレームワークは、現実世界のCOVID-19 EHRデータの死亡リスクを予測するために、競争の激しい実験結果をもたらします。
論文 参考訳(メタデータ) (2021-04-07T06:02:04Z) - Model-agnostic Fits for Understanding Information Seeking Patterns in
Humans [0.0]
不確実な意思決定タスクでは、人間はそのタスクに関連する情報を探し、統合し、行動する際、特徴的なバイアスを示す。
ここでは,これらのバイアスを総合的に測定・分類した,大規模に収集した先行設計実験のデータを再検討した。
これらのバイアスを集約的に再現するディープラーニングモデルを設計し、個々の行動の変化を捉えます。
論文 参考訳(メタデータ) (2020-12-09T04:34:58Z) - ROIAL: Region of Interest Active Learning for Characterizing Exoskeleton
Gait Preference Landscapes [64.87637128500889]
興味あるアクティブラーニング(ROIAL)フレームワークの領域は、関心のある領域を通じて、各ユーザの基盤となるユーティリティ関数を積極的に学習する。
ROIALは、絶対的な数値スコアよりも信頼性の高いフィードバックメカニズムである順序と選好のフィードバックから学習する。
以上の結果から,限られた人為的試行から歩行実用景観を回復できる可能性が示唆された。
論文 参考訳(メタデータ) (2020-11-09T22:45:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。