Explaining Explaining
- URL: http://arxiv.org/abs/2409.18052v2
- Date: Fri, 27 Sep 2024 02:09:44 GMT
- Title: Explaining Explaining
- Authors: Sergei Nirenburg, Marjorie McShane, Kenneth W. Goodman, Sanjay Oruganti,
- Abstract summary: Explanation is key to people having confidence in high-stakes AI systems.
Machine-learning-based systems can't explain because they are usually black boxes.
We describe a hybrid approach to developing cognitive agents.
- Score: 0.882727051273924
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Explanation is key to people having confidence in high-stakes AI systems. However, machine-learning-based systems -- which account for almost all current AI -- can't explain because they are usually black boxes. The explainable AI (XAI) movement hedges this problem by redefining "explanation". The human-centered explainable AI (HCXAI) movement identifies the explanation-oriented needs of users but can't fulfill them because of its commitment to machine learning. In order to achieve the kinds of explanations needed by real people operating in critical domains, we must rethink how to approach AI. We describe a hybrid approach to developing cognitive agents that uses a knowledge-based infrastructure supplemented by data obtained through machine learning when applicable. These agents will serve as assistants to humans who will bear ultimate responsibility for the decisions and actions of the human-robot team. We illustrate the explanatory potential of such agents using the under-the-hood panels of a demonstration system in which a team of simulated robots collaborate on a search task assigned by a human.
Related papers
- Towards Reconciling Usability and Usefulness of Explainable AI
Methodologies [2.715884199292287]
Black-box AI systems can lead to liability and accountability issues when they produce an incorrect decision.
Explainable AI (XAI) seeks to bridge the knowledge gap, between developers and end-users.
arXiv Detail & Related papers (2023-01-13T01:08:49Z) - Seamful XAI: Operationalizing Seamful Design in Explainable AI [59.89011292395202]
Mistakes in AI systems are inevitable, arising from both technical limitations and sociotechnical gaps.
We propose that seamful design can foster AI explainability by revealing sociotechnical and infrastructural mismatches.
We explore this process with 43 AI practitioners and real end-users.
arXiv Detail & Related papers (2022-11-12T21:54:05Z) - Alterfactual Explanations -- The Relevance of Irrelevance for Explaining
AI Systems [0.9542023122304099]
We argue that in order to fully understand a decision, not only knowledge about relevant features is needed, but that the awareness of irrelevant information also highly contributes to the creation of a user's mental model of an AI system.
Our approach, which we call Alterfactual Explanations, is based on showing an alternative reality where irrelevant features of an AI's input are altered.
We show that alterfactual explanations are suited to convey an understanding of different aspects of the AI's reasoning than established counterfactual explanation methods.
arXiv Detail & Related papers (2022-07-19T16:20:37Z) - Diagnosing AI Explanation Methods with Folk Concepts of Behavior [70.10183435379162]
We consider "success" to depend not only on what information the explanation contains, but also on what information the human explainee understands from it.
We use folk concepts of behavior as a framework of social attribution by the human explainee.
arXiv Detail & Related papers (2022-01-27T00:19:41Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2) will incorporate explicit quantifications and visualizations of user confidence in AI recommendations.
It will allow examining and testing of AI system predictions to establish a basis for trust in the systems' decision making.
arXiv Detail & Related papers (2022-01-26T18:53:09Z) - A User-Centred Framework for Explainable Artificial Intelligence in
Human-Robot Interaction [70.11080854486953]
We propose a user-centred framework for XAI that focuses on its social-interactive aspect.
The framework aims to provide a structure for interactive XAI solutions thought for non-expert users.
arXiv Detail & Related papers (2021-09-27T09:56:23Z) - The Who in XAI: How AI Background Shapes Perceptions of AI Explanations [61.49776160925216]
We conduct a mixed-methods study of how two different groups--people with and without AI background--perceive different types of AI explanations.
We find that (1) both groups showed unwarranted faith in numbers for different reasons and (2) each group found value in different explanations beyond their intended design.
arXiv Detail & Related papers (2021-07-28T17:32:04Z) - Explainability via Responsibility [0.9645196221785693]
We present an approach to explainable artificial intelligence in which certain training instances are offered to human users.
We evaluate this approach by approximating its ability to provide human users with the explanations of AI agent's actions.
arXiv Detail & Related papers (2020-10-04T20:41:03Z) - Who is this Explanation for? Human Intelligence and Knowledge Graphs for
eXplainable AI [0.0]
We focus on the contributions that Human Intelligence can bring to eXplainable AI.
We call for a better interplay between Knowledge Representation and Reasoning, Social Sciences, Human Computation and Human-Machine Cooperation research.
arXiv Detail & Related papers (2020-05-27T10:47:15Z) - Explainable Goal-Driven Agents and Robots -- A Comprehensive Review [13.94373363822037]
The paper reviews approaches on explainable goal-driven intelligent agents and robots.
It focuses on techniques for explaining and communicating agents perceptual functions and cognitive reasoning.
It suggests a roadmap for the possible realization of effective goal-driven explainable agents and robots.
arXiv Detail & Related papers (2020-04-21T01:41:20Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
We instantiate the concept of structure of scientific explanation as the theoretical underpinning for a general framework in which explanations for AI systems can be implemented.
This framework aims to provide the tools to build a "mental-model" of any AI system so that the interaction with the user can provide information on demand and be closer to the nature of human-made explanations.
arXiv Detail & Related papers (2020-03-02T10:32:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.