GASP: Gaussian Avatars with Synthetic Priors
- URL: http://arxiv.org/abs/2412.07739v1
- Date: Tue, 10 Dec 2024 18:36:21 GMT
- Title: GASP: Gaussian Avatars with Synthetic Priors
- Authors: Jack Saunders, Charlie Hewitt, Yanan Jian, Marek Kowalski, Tadas Baltrusaitis, Yiye Chen, Darren Cosker, Virginia Estellers, Nicholas Gyde, Vinay P. Namboodiri, Benjamin E Lundell,
- Abstract summary: We propose GASP: Gaussian Avatars with Synthetic Priors.
We exploit the pixel-perfect nature of synthetic data to train a Gaussian Avatar prior.
Our prior is only required for fitting, not inference, enabling real-time application.
- Score: 30.404213841722108
- License:
- Abstract: Gaussian Splatting has changed the game for real-time photo-realistic rendering. One of the most popular applications of Gaussian Splatting is to create animatable avatars, known as Gaussian Avatars. Recent works have pushed the boundaries of quality and rendering efficiency but suffer from two main limitations. Either they require expensive multi-camera rigs to produce avatars with free-view rendering, or they can be trained with a single camera but only rendered at high quality from this fixed viewpoint. An ideal model would be trained using a short monocular video or image from available hardware, such as a webcam, and rendered from any view. To this end, we propose GASP: Gaussian Avatars with Synthetic Priors. To overcome the limitations of existing datasets, we exploit the pixel-perfect nature of synthetic data to train a Gaussian Avatar prior. By fitting this prior model to a single photo or video and fine-tuning it, we get a high-quality Gaussian Avatar, which supports 360$^\circ$ rendering. Our prior is only required for fitting, not inference, enabling real-time application. Through our method, we obtain high-quality, animatable Avatars from limited data which can be animated and rendered at 70fps on commercial hardware. See our project page (https://microsoft.github.io/GASP/) for results.
Related papers
- SqueezeMe: Mobile-Ready Distillation of Gaussian Full-Body Avatars [19.249226899376943]
We present SqueezeMe, a framework to convert high-fidelity 3D Gaussian full-body avatars into a lightweight representation.
We achieve, for the first time, simultaneous animation and rendering of 3 Gaussian avatars in real-time (72 FPS) on a Meta Quest 3 VR headset.
arXiv Detail & Related papers (2024-12-19T18:46:55Z) - GraphAvatar: Compact Head Avatars with GNN-Generated 3D Gaussians [14.420981606586237]
We introduce a method called GraphAvatar that utilizes Graph Neural Networks (GNN) to generate 3D Gaussians for the head avatar.
Our method can store the GNN models instead of the 3D Gaussians, significantly reducing the storage overhead to just 10MB.
We conduct comprehensive experiments to demonstrate the advantages of GraphAvatar, surpassing existing methods in visual fidelity and storage consumption.
arXiv Detail & Related papers (2024-12-18T16:05:40Z) - Generalizable and Animatable Gaussian Head Avatar [50.34788590904843]
We propose Generalizable and Animatable Gaussian head Avatar (GAGAvatar) for one-shot animatable head avatar reconstruction.
We generate the parameters of 3D Gaussians from a single image in a single forward pass.
Our method exhibits superior performance compared to previous methods in terms of reconstruction quality and expression accuracy.
arXiv Detail & Related papers (2024-10-10T14:29:00Z) - LightAvatar: Efficient Head Avatar as Dynamic Neural Light Field [58.93692943064746]
We introduce LightAvatar, the first head avatar model based on neural light fields (NeLFs)
LightAvatar renders an image from 3DMM parameters and a camera pose via a single network forward pass, without using mesh or volume rendering.
arXiv Detail & Related papers (2024-09-26T17:00:02Z) - HAHA: Highly Articulated Gaussian Human Avatars with Textured Mesh Prior [24.094129395653134]
HAHA is a novel approach for animatable human avatar generation from monocular input videos.
We demonstrate its efficiency to animate and render full-body human avatars controlled via the SMPL-X parametric model.
arXiv Detail & Related papers (2024-04-01T11:23:38Z) - GAvatar: Animatable 3D Gaussian Avatars with Implicit Mesh Learning [60.33970027554299]
Gaussian splatting has emerged as a powerful 3D representation that harnesses the advantages of both explicit (mesh) and implicit (NeRF) 3D representations.
In this paper, we seek to leverage Gaussian splatting to generate realistic animatable avatars from textual descriptions.
Our proposed method, GAvatar, enables the large-scale generation of diverse animatable avatars using only text prompts.
arXiv Detail & Related papers (2023-12-18T18:59:12Z) - ASH: Animatable Gaussian Splats for Efficient and Photoreal Human Rendering [62.81677824868519]
We propose an animatable Gaussian splatting approach for photorealistic rendering of dynamic humans in real-time.
We parameterize the clothed human as animatable 3D Gaussians, which can be efficiently splatted into image space to generate the final rendering.
We benchmark ASH with competing methods on pose-controllable avatars, demonstrating that our method outperforms existing real-time methods by a large margin and shows comparable or even better results than offline methods.
arXiv Detail & Related papers (2023-12-10T17:07:37Z) - OTAvatar: One-shot Talking Face Avatar with Controllable Tri-plane
Rendering [81.55960827071661]
Controllability, generalizability and efficiency are the major objectives of constructing face avatars represented by neural implicit field.
We propose One-shot Talking face Avatar (OTAvatar), which constructs face avatars by a generalized controllable tri-plane rendering solution.
arXiv Detail & Related papers (2023-03-26T09:12:03Z) - PointAvatar: Deformable Point-based Head Avatars from Videos [103.43941945044294]
PointAvatar is a deformable point-based representation that disentangles the source color into intrinsic albedo and normal-dependent shading.
We show that our method is able to generate animatable 3D avatars using monocular videos from multiple sources.
arXiv Detail & Related papers (2022-12-16T10:05:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.