論文の概要: Slowly Scaling Per-Record Differential Privacy
- arxiv url: http://arxiv.org/abs/2409.18118v1
- Date: Thu, 26 Sep 2024 17:56:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-28 16:26:02.172422
- Title: Slowly Scaling Per-Record Differential Privacy
- Title(参考訳): 記録単位の差分プライバシーをゆっくりとスケーリングする
- Authors: Brian Finley, Anthony M Caruso, Justin C Doty, Ashwin Machanavajjhala, Mikaela R Meyer, David Pujol, William Sexton, Zachary Terner,
- Abstract要約: 我々は、多くの外部値を持つデータから統計を公開するための正式なプライバシーメカニズムを開発する。
記録ごとの差分プライバシー保証が、公表されている統計に対する保護されたレコードの影響で徐々に低下することを保証する。
- 参考スコア(独自算出の注目度): 6.1245833946368125
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We develop formal privacy mechanisms for releasing statistics from data with many outlying values, such as income data. These mechanisms ensure that a per-record differential privacy guarantee degrades slowly in the protected records' influence on the statistics being released. Formal privacy mechanisms generally add randomness, or "noise," to published statistics. If a noisy statistic's distribution changes little with the addition or deletion of a single record in the underlying dataset, an attacker looking at this statistic will find it plausible that any particular record was present or absent, preserving the records' privacy. More influential records -- those whose addition or deletion would change the statistics' distribution more -- typically suffer greater privacy loss. The per-record differential privacy framework quantifies these record-specific privacy guarantees, but existing mechanisms let these guarantees degrade rapidly (linearly or quadratically) with influence. While this may be acceptable in cases with some moderately influential records, it results in unacceptably high privacy losses when records' influence varies widely, as is common in economic data. We develop mechanisms with privacy guarantees that instead degrade as slowly as logarithmically with influence. These mechanisms allow for the accurate, unbiased release of statistics, while providing meaningful protection for highly influential records. As an example, we consider the private release of sums of unbounded establishment data such as payroll, where our mechanisms extend meaningful privacy protection even to very large establishments. We evaluate these mechanisms empirically and demonstrate their utility.
- Abstract(参考訳): 我々は、所得データなど、多くの外部値を持つデータから統計を公開するための正式なプライバシーメカニズムを開発する。
これらのメカニズムにより、記録ごとの差分プライバシー保証が、公表される統計に対する保護されたレコードの影響で徐々に低下することを保証する。
形式的プライバシー機構は一般に、公表された統計にランダム性、すなわち「ノイズ」を加える。
ノイズの多い統計値の分布が、基礎となるデータセット内の単一のレコードの追加や削除によってほとんど変化しない場合、この統計データを見ているアタッカーは、特定のレコードが存在するか欠落しているかを確認し、レコードのプライバシを保存する。
追加や削除が統計の分布をもっと変えるような、より影響力のある記録は、通常、プライバシーを損なう。
記録ごとの差分プライバシーフレームワークは、これらの記録固有のプライバシー保証を定量化するが、既存のメカニズムにより、これらの保証は影響によって急速に(直線的または二次的に)劣化する。
これは、ある程度の影響力のある記録がある場合に受け入れられるかもしれないが、経済データに共通するように、記録の影響が広範に変化すると、不可避的に高いプライバシー損失をもたらす。
プライバシーを保証するメカニズムを開発し、その代わりに、影響に応じて対数的に遅く劣化する。
これらのメカニズムは、正確で偏見のない統計の公表を可能にし、高い影響力のある記録に対して有意義な保護を提供する。
例えば、当社のメカニズムは、非常に大規模な施設においても有意義なプライバシー保護を延長する、給与のような非有界な施設データの金額の非公開公開について検討する。
これらのメカニズムを実証的に評価し,有用性を実証する。
関連論文リスト
- Privacy Amplification for the Gaussian Mechanism via Bounded Support [64.86780616066575]
インスタンスごとの差分プライバシー(pDP)やフィッシャー情報損失(FIL)といったデータ依存のプライバシ会計フレームワークは、固定されたトレーニングデータセット内の個人に対してきめ細かいプライバシー保証を提供する。
本稿では,データ依存会計下でのプライバシ保証を向上することを示すとともに,バウンドサポートによるガウス機構の簡単な修正を提案する。
論文 参考訳(メタデータ) (2024-03-07T21:22:07Z) - Privately Answering Queries on Skewed Data via Per Record Differential Privacy [8.376475518184883]
我々はプライバシ・フォーマリズムを提案し、PzCDP(0集中差分プライバシー)を記録単位とする。
異なるレコードに対して異なるプライバシ損失を提供する他の形式主義とは異なり、PzCDPのプライバシ損失は機密データに明示的に依存する。
論文 参考訳(メタデータ) (2023-10-19T15:24:49Z) - Adaptive Privacy Composition for Accuracy-first Mechanisms [55.53725113597539]
ノイズ低減機構はますます正確な答えを生み出す。
アナリストは、公表された最も騒々しい、あるいは最も正確な回答のプライバシー費用のみを支払う。
ポスト前のプライベートメカニズムがどのように構成されるかは、まだ研究されていない。
我々は、分析者が微分プライベートとポストプライベートのメカニズムを適応的に切り替えることのできるプライバシーフィルタを開発した。
論文 参考訳(メタデータ) (2023-06-24T00:33:34Z) - Summary Statistic Privacy in Data Sharing [23.50797952699759]
本研究では,データ配信の要約統計を明らかにすることなく,データ保持者が受信者とデータを共有したい状況について検討する。
このようなメカニズムのプライバシーリスクを定量化するための指標である統計プライバシーの要約を提案する。
提案した量子化メカニズムは、代替プライバシメカニズムよりも優れたプライバシー歪曲トレードオフを実現する。
論文 参考訳(メタデータ) (2023-03-03T15:29:19Z) - Breaking the Communication-Privacy-Accuracy Tradeoff with
$f$-Differential Privacy [51.11280118806893]
サーバが複数のユーザの協調的なデータ分析を,プライバシの懸念と限られた通信能力で調整する,フェデレートされたデータ分析問題を考える。
有限出力空間を有する離散値機構の局所的差分プライバシー保証を$f$-differential privacy (DP) レンズを用いて検討する。
より具体的には、様々な離散的評価機構の厳密な$f$-DP保証を導出することにより、既存の文献を前進させる。
論文 参考訳(メタデータ) (2023-02-19T16:58:53Z) - DP2-Pub: Differentially Private High-Dimensional Data Publication with
Invariant Post Randomization [58.155151571362914]
本稿では,2つのフェーズで動作する差分プライベートな高次元データパブリッシング機構(DP2-Pub)を提案する。
属性をクラスタ内凝集度の高い低次元クラスタに分割し、クラスタ間の結合度を低くすることで、適切なプライバシ予算を得ることができる。
また、DP2-Pubメカニズムを、ローカルの差分プライバシーを満たす半正直なサーバでシナリオに拡張します。
論文 参考訳(メタデータ) (2022-08-24T17:52:43Z) - Protecting Global Properties of Datasets with Distribution Privacy
Mechanisms [8.19841678851784]
このようなデータの機密性を形式化するために、配信プライバシフレームワークをどのように適用できるかを示す。
次に、これらのメカニズムのプライバシユーティリティトレードオフを実証的に評価し、実用的なプロパティ推論攻撃に対して適用する。
論文 参考訳(メタデータ) (2022-07-18T03:54:38Z) - Post-processing of Differentially Private Data: A Fairness Perspective [53.29035917495491]
本稿では,ポストプロセッシングが個人やグループに異なる影響を与えることを示す。
差分的にプライベートなデータセットのリリースと、ダウンストリームの決定にそのようなプライベートなデータセットを使用するという、2つの重要な設定を分析している。
それは、異なる公正度尺度の下で(ほぼ)最適である新しい後処理機構を提案する。
論文 参考訳(メタデータ) (2022-01-24T02:45:03Z) - Distribution-Invariant Differential Privacy [4.700764053354502]
本研究では,高い統計的精度と厳密な差分プライバシーを両立する分布不変民営化法(DIP)を提案する。
同じ厳密なプライバシー保護の下で、DIPは2つのシミュレーションと3つの実世界のベンチマークで優れた統計的精度を達成する。
論文 参考訳(メタデータ) (2021-11-08T22:26:50Z) - Causally Constrained Data Synthesis for Private Data Release [36.80484740314504]
原データの特定の統計特性を反映した合成データを使用することで、原データのプライバシーが保護される。
以前の作業では、正式なプライバシ保証を提供するために、差分プライベートなデータリリースメカニズムを使用していました。
トレーニングプロセスに因果情報を導入し、上記のトレードオフを好意的に修正することを提案する。
論文 参考訳(メタデータ) (2021-05-27T13:46:57Z) - Decision Making with Differential Privacy under a Fairness Lens [65.16089054531395]
アメリカ国勢調査局は、多くの重要な意思決定プロセスの入力として使用される個人のグループに関するデータセットと統計を公表している。
プライバシと機密性要件に従うために、これらの機関は、しばしば、プライバシを保存するバージョンのデータを公開する必要がある。
本稿では,差分的プライベートデータセットのリリースについて検討し,公平性の観点から重要な資源配分タスクに与える影響を考察する。
論文 参考訳(メタデータ) (2021-05-16T21:04:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。