LangSAMP: Language-Script Aware Multilingual Pretraining
- URL: http://arxiv.org/abs/2409.18199v1
- Date: Thu, 26 Sep 2024 18:29:10 GMT
- Title: LangSAMP: Language-Script Aware Multilingual Pretraining
- Authors: Yihong Liu, Haotian Ye, Chunlan Ma, Mingyang Wang, Hinrich Schütze,
- Abstract summary: Recent multilingual pretrained language models (mPLMs) often avoid using language embeddings.
LangSAMP incorporates both language and script embeddings to enhance representation learning.
We apply LangSAMP to the continual pretraining of XLM-R on a highly multilingual corpus covering more than 500 languages.
- Score: 48.16511046793275
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent multilingual pretrained language models (mPLMs) often avoid using language embeddings -- learnable vectors assigned to different languages. These embeddings are discarded for two main reasons: (1) mPLMs are expected to have a single, unified parameter set across all languages, and (2) they need to function seamlessly as universal text encoders without requiring language IDs as input. However, this removal increases the burden on token embeddings to encode all language-specific information, which may hinder the model's ability to produce more language-neutral representations. To address this challenge, we propose Language-Script Aware Multilingual Pretraining (LangSAMP), a method that incorporates both language and script embeddings to enhance representation learning while maintaining a simple architecture. Specifically, we integrate these embeddings into the output of the transformer blocks before passing the final representations to the language modeling head for prediction. We apply LangSAMP to the continual pretraining of XLM-R on a highly multilingual corpus covering more than 500 languages. The resulting model consistently outperforms the baseline. Extensive analysis further shows that language/script embeddings encode language/script-specific information, which improves the selection of source languages for crosslingual transfer. We make our code and models publicly available at \url{https://github.com/cisnlp/LangSAMP}.
Related papers
- A two-stage transliteration approach to improve performance of a multilingual ASR [1.9511556030544333]
This paper presents an approach to build a language-agnostic end-to-end model trained on a grapheme set.
We performed experiments with an end-to-end multilingual speech recognition system for two Indic languages.
arXiv Detail & Related papers (2024-10-09T05:30:33Z) - MoE-LPR: Multilingual Extension of Large Language Models through Mixture-of-Experts with Language Priors Routing [78.62611800987817]
Large Language Models (LLMs) are often English-centric due to the disproportionate distribution of languages in their pre-training data.
We propose a method called MoE-LPR (Mixture-of-Experts with Language Priors) to enhance the multilingual capability.
arXiv Detail & Related papers (2024-08-21T07:43:49Z) - Breaking the Script Barrier in Multilingual Pre-Trained Language Models with Transliteration-Based Post-Training Alignment [50.27950279695363]
The transfer performance is often hindered when a low-resource target language is written in a different script than the high-resource source language.
Inspired by recent work that uses transliteration to address this problem, our paper proposes a transliteration-based post-pretraining alignment (PPA) method.
arXiv Detail & Related papers (2024-06-28T08:59:24Z) - Soft Language Clustering for Multilingual Model Pre-training [57.18058739931463]
We propose XLM-P, which contextually retrieves prompts as flexible guidance for encoding instances conditionally.
Our XLM-P enables (1) lightweight modeling of language-invariant and language-specific knowledge across languages, and (2) easy integration with other multilingual pre-training methods.
arXiv Detail & Related papers (2023-06-13T08:08:08Z) - UNKs Everywhere: Adapting Multilingual Language Models to New Scripts [103.79021395138423]
Massively multilingual language models such as multilingual BERT (mBERT) and XLM-R offer state-of-the-art cross-lingual transfer performance on a range of NLP tasks.
Due to their limited capacity and large differences in pretraining data, there is a profound performance gap between resource-rich and resource-poor target languages.
We propose novel data-efficient methods that enable quick and effective adaptation of pretrained multilingual models to such low-resource languages and unseen scripts.
arXiv Detail & Related papers (2020-12-31T11:37:28Z) - Learning to Scale Multilingual Representations for Vision-Language Tasks [51.27839182889422]
The effectiveness of SMALR is demonstrated with ten diverse languages, over twice the number supported in vision-language tasks to date.
We evaluate on multilingual image-sentence retrieval and outperform prior work by 3-4% with less than 1/5th the training parameters compared to other word embedding methods.
arXiv Detail & Related papers (2020-04-09T01:03:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.