論文の概要: Visual Concept Networks: A Graph-Based Approach to Detecting Anomalous Data in Deep Neural Networks
- arxiv url: http://arxiv.org/abs/2409.18235v1
- Date: Thu, 26 Sep 2024 19:27:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-06 15:01:18.566320
- Title: Visual Concept Networks: A Graph-Based Approach to Detecting Anomalous Data in Deep Neural Networks
- Title(参考訳): ビジュアルコンセプトネットワーク:ディープニューラルネットワークにおける異常データ検出のためのグラフベースのアプローチ
- Authors: Debargha Ganguly, Debayan Gupta, Vipin Chaudhary,
- Abstract要約: ディープニューラルネットワーク(DNN)は異常やアウト・オブ・ディストリビューション(OOD)データに対する堅牢性に苦しむ。
本稿では, グラフ構造とトポロジ的特徴を利用して, 遠距離OODデータと近距離OODデータの両方を効果的に検出する手法を提案する。
- 参考スコア(独自算出の注目度): 0.680303951699936
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep neural networks (DNNs), while increasingly deployed in many applications, struggle with robustness against anomalous and out-of-distribution (OOD) data. Current OOD benchmarks often oversimplify, focusing on single-object tasks and not fully representing complex real-world anomalies. This paper introduces a new, straightforward method employing graph structures and topological features to effectively detect both far-OOD and near-OOD data. We convert images into networks of interconnected human understandable features or visual concepts. Through extensive testing on two novel tasks, including ablation studies with large vocabularies and diverse tasks, we demonstrate the method's effectiveness. This approach enhances DNN resilience to OOD data and promises improved performance in various applications.
- Abstract(参考訳): ディープニューラルネットワーク(DNN)は多くのアプリケーションにますますデプロイされているが、異常やアウト・オブ・ディストリビューション(OOD)データに対する堅牢性に苦慮している。
現在のOODベンチマークは、しばしば単純化され、単一のオブジェクトタスクに重点を置いており、複雑な現実世界の異常を完全に表現していない。
本稿では, グラフ構造とトポロジ的特徴を利用して, 遠距離OODデータと近距離OODデータの両方を効果的に検出する手法を提案する。
画像を相互接続された人間の理解可能な特徴や視覚概念のネットワークに変換する。
大きな語彙と多様なタスクによるアブレーション研究を含む2つの新しいタスクの広範なテストを通じて、本手法の有効性を実証する。
このアプローチにより、OODデータに対するDNNレジリエンスが向上し、さまざまなアプリケーションのパフォーマンスが向上する。
関連論文リスト
- Dimensionality-induced information loss of outliers in deep neural networks [29.15751143793406]
ディープニューラルネットワーク(DNN)を用いたシステムにおいて、アウト・オブ・ディストリビューション(OOD)検出は重要な問題である
複数の視点から特徴表現の層依存性を調べることにより,この問題を実験的に解明する。
特徴量と重みのアライメントに基づく次元認識型OOD検出手法を提案する。
論文 参考訳(メタデータ) (2024-10-29T01:52:46Z) - TagOOD: A Novel Approach to Out-of-Distribution Detection via Vision-Language Representations and Class Center Learning [26.446233594630087]
視覚言語表現を用いたOOD検出のための新しいアプローチである textbfTagOOD を提案する。
TagOODは、抽出されたオブジェクトの特徴に基づいて軽量なネットワークをトレーニングし、代表的なクラスセンターを学習する。
これらの中心は、OOD検出における無関係な画像特徴の影響を最小限に抑え、INDオブジェクトクラスの中心的な傾向を捉えている。
論文 参考訳(メタデータ) (2024-08-28T06:37:59Z) - Efficient and Accurate Hyperspectral Image Demosaicing with Neural Network Architectures [3.386560551295746]
本研究では,ハイパースペクトル画像復調におけるニューラルネットワークアーキテクチャの有効性について検討した。
様々なネットワークモデルと修正を導入し、それらを従来の手法や既存の参照ネットワークアプローチと比較する。
その結果、我々のネットワークは、例外的な性能を示す両方のデータセットにおいて、参照モデルよりも優れるか、一致していることがわかった。
論文 参考訳(メタデータ) (2023-12-21T08:02:49Z) - NECO: NEural Collapse Based Out-of-distribution detection [2.4958897155282282]
OOD検出のための新しいポストホック法NECOを紹介する。
実験の結果,NECOは小型・大規模OOD検出タスクの両方を達成できた。
OOD検出における本手法の有効性を理論的に説明する。
論文 参考訳(メタデータ) (2023-10-10T17:53:36Z) - Deep Neural Networks Tend To Extrapolate Predictably [51.303814412294514]
ニューラルネットワークの予測は、アウト・オブ・ディストリビューション(OOD)入力に直面した場合、予測不可能で過信される傾向がある。
我々は、入力データがOODになるにつれて、ニューラルネットワークの予測が一定値に向かう傾向があることを観察する。
我々は、OOD入力の存在下でリスクに敏感な意思決定を可能にするために、私たちの洞察を実際に活用する方法を示します。
論文 参考訳(メタデータ) (2023-10-02T03:25:32Z) - Energy-based Out-of-Distribution Detection for Graph Neural Networks [76.0242218180483]
我々は,GNNSafeと呼ばれるグラフ上での学習のための,シンプルで強力で効率的なOOD検出モデルを提案する。
GNNSafeは、最先端技術に対するAUROCの改善を最大17.0%で達成しており、そのような未開発領域では単純だが強力なベースラインとして機能する可能性がある。
論文 参考訳(メタデータ) (2023-02-06T16:38:43Z) - FuNNscope: Visual microscope for interactively exploring the loss
landscape of fully connected neural networks [77.34726150561087]
ニューラルネットワークの高次元景観特性を探索する方法を示す。
我々は、小さなニューラルネットワークの観測結果をより複雑なシステムに一般化する。
インタラクティブダッシュボードは、いくつかのアプリケーションネットワークを開放する。
論文 参考訳(メタデータ) (2022-04-09T16:41:53Z) - Triggering Failures: Out-Of-Distribution detection by learning from
local adversarial attacks in Semantic Segmentation [76.2621758731288]
セグメンテーションにおけるアウト・オブ・ディストリビューション(OOD)オブジェクトの検出に取り組む。
私たちの主な貢献は、ObsNetと呼ばれる新しいOOD検出アーキテクチャであり、ローカル・アタック(LAA)に基づく専用トレーニングスキームと関連付けられています。
3つの異なるデータセットの文献の最近の10つの手法と比較して,速度と精度の両面で最高の性能が得られることを示す。
論文 参考訳(メタデータ) (2021-08-03T17:09:56Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
本論文では,アトリビュートネットワーク上の異常検出のためのコントラスト型自己監視学習フレームワークを提案する。
このフレームワークは、新しいタイプのコントラストインスタンスペアをサンプリングすることで、ネットワークデータからのローカル情報を完全に活用します。
高次元特性と局所構造から情報埋め込みを学習するグラフニューラルネットワークに基づくコントラスト学習モデルを提案する。
論文 参考訳(メタデータ) (2021-02-27T03:17:20Z) - Learning Deep Interleaved Networks with Asymmetric Co-Attention for
Image Restoration [65.11022516031463]
本稿では,高品質(本社)画像再構成のために,異なる状態の情報をどのように組み合わせるべきかを学習するディープインターリーブドネットワーク(DIN)を提案する。
本稿では,各インターリーブノードにアタッチメントされた非対称なコアテンション(AsyCA)を提案し,その特性依存性をモデル化する。
提案したDINはエンドツーエンドで訓練でき、様々な画像復元タスクに適用できる。
論文 参考訳(メタデータ) (2020-10-29T15:32:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。