Development of an Edge Resilient ML Ensemble to Tolerate ICS Adversarial Attacks
- URL: http://arxiv.org/abs/2409.18244v1
- Date: Thu, 26 Sep 2024 19:37:37 GMT
- Title: Development of an Edge Resilient ML Ensemble to Tolerate ICS Adversarial Attacks
- Authors: Likai Yao, Qinxuan Shi, Zhanglong Yang, Sicong Shao, Salim Hariri,
- Abstract summary: We build a resilient edge machine learning architecture that is designed to withstand adversarial attacks.
The reML is based on the Resilient DDDAS paradigm, Moving Target Defense (MTD) theory, and TinyML.
The proposed approach is power-efficient and privacy-preserving and, therefore, can be deployed on power-constrained devices to enhance ICS security.
- Score: 0.9437165725355702
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deploying machine learning (ML) in dynamic data-driven applications systems (DDDAS) can improve the security of industrial control systems (ICS). However, ML-based DDDAS are vulnerable to adversarial attacks because adversaries can alter the input data slightly so that the ML models predict a different result. In this paper, our goal is to build a resilient edge machine learning (reML) architecture that is designed to withstand adversarial attacks by performing Data Air Gap Transformation (DAGT) to anonymize data feature spaces using deep neural networks and randomize the ML models used for predictions. The reML is based on the Resilient DDDAS paradigm, Moving Target Defense (MTD) theory, and TinyML and is applied to combat adversarial attacks on ICS. Furthermore, the proposed approach is power-efficient and privacy-preserving and, therefore, can be deployed on power-constrained devices to enhance ICS security. This approach enables resilient ML inference at the edge by shifting the computation from the computing-intensive platforms to the resource-constrained edge devices. The incorporation of TinyML with TensorFlow Lite ensures efficient resource utilization and, consequently, makes reML suitable for deployment in various industrial control environments. Furthermore, the dynamic nature of reML, facilitated by the resilient DDDAS development environment, allows for continuous adaptation and improvement in response to emerging threats. Lastly, we evaluate our approach on an ICS dataset and demonstrate that reML provides a viable and effective solution for resilient ML inference at the edge devices.
Related papers
- Efficient Federated Intrusion Detection in 5G ecosystem using optimized BERT-based model [0.7100520098029439]
5G offers advanced services, supporting applications such as intelligent transportation, connected healthcare, and smart cities within the Internet of Things (IoT)
These advancements introduce significant security challenges, with increasingly sophisticated cyber-attacks.
This paper proposes a robust intrusion detection system (IDS) using federated learning and large language models (LLMs)
arXiv Detail & Related papers (2024-09-28T15:56:28Z) - INTELLECT: Adapting Cyber Threat Detection to Heterogeneous Computing Environments [0.055923945039144884]
This paper introduces INTELLECT, a novel solution that integrates feature selection, model pruning, and fine-tuning techniques into a cohesive pipeline for the dynamic adaptation of pre-trained ML models and configurations for IDSs.
We demonstrate the advantages of incorporating knowledge distillation techniques while fine-tuning, enabling the ML model to consistently adapt to local network patterns while preserving historical knowledge.
arXiv Detail & Related papers (2024-07-17T22:34:29Z) - R-SFLLM: Jamming Resilient Framework for Split Federated Learning with Large Language Models [83.77114091471822]
Split federated learning (SFL) is a compute-efficient paradigm in distributed machine learning (ML)
A challenge in SFL, particularly when deployed over wireless channels, is the susceptibility of transmitted model parameters to adversarial jamming.
This is particularly pronounced for word embedding parameters in large language models (LLMs), which are crucial for language understanding.
A physical layer framework is developed for resilient SFL with LLMs (R-SFLLM) over wireless networks.
arXiv Detail & Related papers (2024-07-16T12:21:29Z) - Defending Large Language Models Against Attacks With Residual Stream Activation Analysis [0.0]
Large Language Models (LLMs) are vulnerable to adversarial threats.
This paper presents an innovative defensive strategy, given white box access to an LLM.
We apply a novel methodology for analyzing distinctive activation patterns in the residual streams for attack prompt classification.
arXiv Detail & Related papers (2024-06-05T13:06:33Z) - RigorLLM: Resilient Guardrails for Large Language Models against Undesired Content [62.685566387625975]
Current mitigation strategies, while effective, are not resilient under adversarial attacks.
This paper introduces Resilient Guardrails for Large Language Models (RigorLLM), a novel framework designed to efficiently moderate harmful and unsafe inputs.
arXiv Detail & Related papers (2024-03-19T07:25:02Z) - A Simple Framework to Enhance the Adversarial Robustness of Deep
Learning-based Intrusion Detection System [5.189166936995511]
We propose a novel IDS architecture that can enhance the robustness of IDS against adversarial attacks.
The proposed-IDS consists of three components: DL-based IDS, adversarial example detector, and ML-based IDS.
In our experiments, we observe a significant improvement in the prediction performance of the IDS when subjected to adversarial attack.
arXiv Detail & Related papers (2023-12-06T02:33:12Z) - Vulnerability of Machine Learning Approaches Applied in IoT-based Smart Grid: A Review [51.31851488650698]
Machine learning (ML) sees an increasing prevalence of being used in the internet-of-things (IoT)-based smart grid.
adversarial distortion injected into the power signal will greatly affect the system's normal control and operation.
It is imperative to conduct vulnerability assessment for MLsgAPPs applied in the context of safety-critical power systems.
arXiv Detail & Related papers (2023-08-30T03:29:26Z) - RoFL: Attestable Robustness for Secure Federated Learning [59.63865074749391]
Federated Learning allows a large number of clients to train a joint model without the need to share their private data.
To ensure the confidentiality of the client updates, Federated Learning systems employ secure aggregation.
We present RoFL, a secure Federated Learning system that improves robustness against malicious clients.
arXiv Detail & Related papers (2021-07-07T15:42:49Z) - Reconfigurable Intelligent Surface Assisted Mobile Edge Computing with
Heterogeneous Learning Tasks [53.1636151439562]
Mobile edge computing (MEC) provides a natural platform for AI applications.
We present an infrastructure to perform machine learning tasks at an MEC with the assistance of a reconfigurable intelligent surface (RIS)
Specifically, we minimize the learning error of all participating users by jointly optimizing transmit power of mobile users, beamforming vectors of the base station, and the phase-shift matrix of the RIS.
arXiv Detail & Related papers (2020-12-25T07:08:50Z) - Optimization-driven Machine Learning for Intelligent Reflecting Surfaces
Assisted Wireless Networks [82.33619654835348]
Intelligent surface (IRS) has been employed to reshape the wireless channels by controlling individual scattering elements' phase shifts.
Due to the large size of scattering elements, the passive beamforming is typically challenged by the high computational complexity.
In this article, we focus on machine learning (ML) approaches for performance in IRS-assisted wireless networks.
arXiv Detail & Related papers (2020-08-29T08:39:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.