論文の概要: Discovering New Shadow Patterns for Black-Box Attacks on Lane Detection of Autonomous Vehicles
- arxiv url: http://arxiv.org/abs/2409.18248v1
- Date: Thu, 26 Sep 2024 19:43:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-06 15:01:18.552269
- Title: Discovering New Shadow Patterns for Black-Box Attacks on Lane Detection of Autonomous Vehicles
- Title(参考訳): 自動運転車の車線検出におけるブラックボックス攻撃の新たなシャドウパターンの発見
- Authors: Pedram MohajerAnsari, Alkim Domeke, Jan de Voor, Arkajyoti Mitra, Grace Johnson, Amir Salarpour, Habeeb Olufowobi, Mohammad Hamad, Mert D. Pesé,
- Abstract要約: 本稿では,実世界逆転例(AE)を創出するための新しいアプローチを提案する。
負の影: 戦略的に日光を遮り、人工車線のようなパターンを放つ道路上の光の偽りのパターン。
20メートルの負の影を使って、10mph以上の速度で100%違反率で車両をオフロードに誘導することができる。
衝突を引き起こすような他の攻撃シナリオは、少なくとも30mの負の影で実行でき、60-100%の成功率を達成することができる。
- 参考スコア(独自算出の注目度): 2.5539742994571037
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Ensuring autonomous vehicle (AV) security remains a critical concern. An area of paramount importance is the study of physical-world adversarial examples (AEs) aimed at exploiting vulnerabilities in perception systems. However, most of the prevailing research on AEs has neglected considerations of stealthiness and legality, resulting in scenarios where human drivers would promptly intervene or attackers would be swiftly detected and punished. These limitations hinder the applicability of such examples in real-life settings. In this paper, we introduce a novel approach to generate AEs using what we term negative shadows: deceptive patterns of light on the road created by strategically blocking sunlight, which then cast artificial lane-like patterns. These shadows are inconspicuous to a driver while deceiving AV perception systems, particularly those reliant on lane detection algorithms. By prioritizing the stealthy nature of attacks to minimize driver interventions and ensuring their legality from an attacker's standpoint, a more plausible range of scenarios is established. In multiple scenarios, including at low speeds, our method shows a high safety violation rate. Using a 20-meter negative shadow, it can direct a vehicle off-road with a 100% violation rate at speeds over 10 mph. Other attack scenarios, such as causing collisions, can be performed with at least 30 meters of negative shadow, achieving a 60-100% success rate. The attack also maintains an average stealthiness of 83.6% as measured through a human subject experiment, ensuring its efficacy in covert settings.
- Abstract(参考訳): 自動運転車(AV)の安全性の確保は依然として重要な問題である。
最も重要な分野は、知覚システムの脆弱性を悪用することを目的とした物理世界の敵例(AE)の研究である。
しかしながら、AEsに関する一般的な研究の多くは、盗聴と合法性について考慮を怠っており、その結果、人間のドライバーがすぐに介入したり、攻撃者が迅速に検出され罰せられるシナリオが生じた。
これらの制限は、実生活におけるそのような例の適用性を妨げている。
本稿では,日光を戦略的に遮断し,人工車線様のパターンを呈する道路上の光の擬似パターンを,陰影(負影)と呼ぶ手法を提案する。
これらの影は、特に車線検出アルゴリズムに依存しているAV認識システムを欺いている間、運転者には目立たない。
ドライバーの介入を最小限に抑え、攻撃者の立場から合法性を確保するために、攻撃のステルスな性質を優先することにより、より妥当なシナリオが確立される。
低速を含む複数のシナリオにおいて,本手法は高い安全性違反率を示す。
20メートルの負の影を使って、10mph以上の速度で100%違反率で車両をオフロードに誘導することができる。
衝突を引き起こすような他の攻撃シナリオは、少なくとも30mの負の影で実行でき、60-100%の成功率を達成することができる。
この攻撃はまた、人体実験を通じて測定された平均ステルス性83.6%を維持し、秘密の設定における有効性を保証する。
関連論文リスト
- ControlLoc: Physical-World Hijacking Attack on Visual Perception in Autonomous Driving [30.286501966393388]
危険な運転シナリオを引き起こすために、デジタルハイジャック攻撃が提案されている。
我々は、自律運転(AD)視覚認識全体のハイジャック脆弱性を活用するために設計された、新しい物理世界の逆パッチアタックであるControlLocを導入する。
論文 参考訳(メタデータ) (2024-06-09T14:53:50Z) - LanEvil: Benchmarking the Robustness of Lane Detection to Environmental Illusions [61.87108000328186]
レーン検出(LD)は自律走行システムにおいて不可欠な要素であり、適応型クルーズ制御や自動車線センターなどの基本的な機能を提供している。
既存のLDベンチマークは主に、環境錯覚に対するLDモデルの堅牢性を無視し、一般的なケースを評価することに焦点を当てている。
本稿では、LDに対する環境錯覚による潜在的な脅威について検討し、LanEvilの最初の総合ベンチマークを確立する。
論文 参考訳(メタデータ) (2024-06-03T02:12:27Z) - Work-in-Progress: Crash Course: Can (Under Attack) Autonomous Driving Beat Human Drivers? [60.51287814584477]
本稿では,現在のAVの状況を調べることによって,自律運転における本質的なリスクを評価する。
AVの利点と、現実のシナリオにおける潜在的なセキュリティ課題との微妙なバランスを強調した、特定のクレームを開発する。
論文 参考訳(メタデータ) (2024-05-14T09:42:21Z) - Invisible Reflections: Leveraging Infrared Laser Reflections to Target
Traffic Sign Perception [25.566091959509986]
道路標識は、速度制限や利得または停止の要件など、局所的に活発な規則を示す。
最近の研究は、標識にステッカーや投影された色のパッチを加えるなど、CAVの誤解釈を引き起こすような攻撃を実証している。
我々は、フィルタレス画像センサの感度を利用した効果的な物理世界攻撃を開発した。
論文 参考訳(メタデータ) (2024-01-07T21:22:42Z) - TPatch: A Triggered Physical Adversarial Patch [19.768494127237393]
音響信号によって引き起こされる物理的対向パッチであるTPatchを提案する。
運転者の疑念を避けるため,コンテンツベースカモフラージュ法と攻撃強化法を提案する。
論文 参考訳(メタデータ) (2023-12-30T06:06:01Z) - Illusory Attacks: Information-Theoretic Detectability Matters in Adversarial Attacks [76.35478518372692]
エプシロン・イリューソリー(epsilon-illusory)は、シーケンシャルな意思決定者に対する敵対的攻撃の新たな形態である。
既存の攻撃と比較して,エプシロン・イリューソリーの自動検出は極めて困難である。
以上の結果から, より優れた異常検知器, 効果的なハードウェアおよびシステムレベルの防御の必要性が示唆された。
論文 参考訳(メタデータ) (2022-07-20T19:49:09Z) - Physical Attack on Monocular Depth Estimation with Optimal Adversarial
Patches [18.58673451901394]
我々は学習に基づく単眼深度推定(MDE)に対する攻撃を開発する。
我々は,攻撃のステルス性と有効性を,オブジェクト指向の対角設計,感度領域の局所化,自然スタイルのカモフラージュとバランスさせる。
実験結果から,本手法は,異なる対象オブジェクトやモデルに対して,ステルス性,有効,堅牢な逆パッチを生成できることが示唆された。
論文 参考訳(メタデータ) (2022-07-11T08:59:09Z) - Shadows can be Dangerous: Stealthy and Effective Physical-world
Adversarial Attack by Natural Phenomenon [79.33449311057088]
我々は、非常に一般的な自然現象であるシャドーによって摂動が生じる新しい種類の光対角運動例について研究する。
我々は,シミュレーション環境と実環境の両方において,この新たな攻撃の有効性を広く評価した。
論文 参考訳(メタデータ) (2022-03-08T02:40:18Z) - Evaluating the Robustness of Semantic Segmentation for Autonomous
Driving against Real-World Adversarial Patch Attacks [62.87459235819762]
自動運転車のような現実のシナリオでは、現実の敵例(RWAE)にもっと注意を払わなければならない。
本稿では,デジタルおよび実世界の敵対パッチの効果を検証し,一般的なSSモデルのロバスト性を詳細に評価する。
論文 参考訳(メタデータ) (2021-08-13T11:49:09Z) - Dirty Road Can Attack: Security of Deep Learning based Automated Lane
Centering under Physical-World Attack [38.3805893581568]
本研究では,物理世界の敵対的攻撃下での最先端のディープラーニングに基づくALCシステムの安全性について検討する。
安全クリティカルな攻撃目標と、新しいドメイン固有の攻撃ベクトル、汚い道路パッチで問題を定式化する。
実世界の走行トレースから80のシナリオを用いて実運用ALCに対する攻撃を評価した。
論文 参考訳(メタデータ) (2020-09-14T19:22:39Z) - Physically Realizable Adversarial Examples for LiDAR Object Detection [72.0017682322147]
本稿では,LiDAR検出器を騙すために,汎用な3次元対向物体を生成する手法を提案する。
特に,LiDAR検出器から車両を完全に隠蔽するために,車両の屋根上に対向物体を配置し,その成功率は80%であることを示した。
これは、限られたトレーニングデータから見知らぬ条件下での、より安全な自動運転への一歩だ。
論文 参考訳(メタデータ) (2020-04-01T16:11:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。