SLIDE: A machine-learning based method for forced dynamic response estimation of multibody systems
- URL: http://arxiv.org/abs/2409.18272v1
- Date: Thu, 26 Sep 2024 20:34:07 GMT
- Title: SLIDE: A machine-learning based method for forced dynamic response estimation of multibody systems
- Authors: Peter Manzl, Alexander Humer, Qasim Khadim, Johannes Gerstmayr,
- Abstract summary: SLiding-window Initially-truncated Dynamic-response Estimator (SLIDE)
Deep learning-based method designed to estimate output sequences of mechanical or multibody systems.
Results demonstrate significant speedups from the simulation up to several millions, exceeding real-time performance substantially.
- Score: 42.87502453001109
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In computational engineering, enhancing the simulation speed and efficiency is a perpetual goal. To fully take advantage of neural network techniques and hardware, we present the SLiding-window Initially-truncated Dynamic-response Estimator (SLIDE), a deep learning-based method designed to estimate output sequences of mechanical or multibody systems with primarily, but not exclusively, forced excitation. A key advantage of SLIDE is its ability to estimate the dynamic response of damped systems without requiring the full system state, making it particularly effective for flexible multibody systems. The method truncates the output window based on the decay of initial effects, such as damping, which is approximated by the complex eigenvalues of the systems linearized equations. In addition, a second neural network is trained to provide an error estimation, further enhancing the methods applicability. The method is applied to a diverse selection of systems, including the Duffing oscillator, a flexible slider-crank system, and an industrial 6R manipulator, mounted on a flexible socket. Our results demonstrate significant speedups from the simulation up to several millions, exceeding real-time performance substantially.
Related papers
- Learning Controlled Stochastic Differential Equations [61.82896036131116]
This work proposes a novel method for estimating both drift and diffusion coefficients of continuous, multidimensional, nonlinear controlled differential equations with non-uniform diffusion.
We provide strong theoretical guarantees, including finite-sample bounds for (L2), (Linfty), and risk metrics, with learning rates adaptive to coefficients' regularity.
Our method is available as an open-source Python library.
arXiv Detail & Related papers (2024-11-04T11:09:58Z) - Adaptive variational low-rank dynamics for open quantum systems [0.0]
We introduce a novel, model-independent method for the efficient simulation of low-entropy systems.
Our results highlight the method's versatility and efficiency, making it applicable to a wide range of systems.
arXiv Detail & Related papers (2023-12-21T08:57:41Z) - Interpretable learning of effective dynamics for multiscale systems [5.754251195342313]
We propose a novel framework of Interpretable Learning Effective Dynamics (iLED)
iLED offers comparable accuracy to state-of-theart recurrent neural network-based approaches.
Our results show that the iLED framework can generate accurate predictions and obtain interpretable dynamics.
arXiv Detail & Related papers (2023-09-11T20:29:38Z) - Data-Driven Response Regime Exploration and Identification for Dynamical
Systems [0.0]
Data-Driven Response Regime Exploration and Identification (DR$2$EI) is a novel and fully data-driven method for identifying and classifying response regimes of a dynamical system.
DR$2$EI utilizes unsupervised learning algorithms to transform the system's response into an embedding space that facilitates regime classification.
The performance of the DR$2$EI method was evaluated by analyzing three established dynamical systems.
arXiv Detail & Related papers (2023-04-07T00:11:49Z) - Adaptive learning of effective dynamics: Adaptive real-time, online
modeling for complex systems [2.6144444305800234]
We propose a novel framework that bridges large scale simulations and reduced order models to extract and forecast adaptively effective dynamics.
AdaLED employs an autoencoder to identify reduced-order representations of the system dynamics and an ensemble of probabilistic recurrent neural networks (RNNs) as the latent time-steppertemporal.
The framework alternates between the computational solver and the surrogate, accelerating learned dynamics while leaving yet-to-be-learned dynamics regimes to the original solver.
arXiv Detail & Related papers (2023-04-04T12:05:51Z) - On Fast Simulation of Dynamical System with Neural Vector Enhanced
Numerical Solver [59.13397937903832]
We introduce a deep learning-based corrector called Neural Vector (NeurVec)
NeurVec can compensate for integration errors and enable larger time step sizes in simulations.
Our experiments on a variety of complex dynamical system benchmarks demonstrate that NeurVec exhibits remarkable generalization capability.
arXiv Detail & Related papers (2022-08-07T09:02:18Z) - Learning effective dynamics from data-driven stochastic systems [2.4578723416255754]
This work is devoted to investigating the effective dynamics for slow-fast dynamical systems.
We propose a novel algorithm including a neural network called Auto-SDE to learn in slow manifold.
arXiv Detail & Related papers (2022-05-09T09:56:58Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
We propose a structured latent ODE model that captures system input variations within its latent representation.
Building on a static variable specification, our model learns factors of variation for each input to the system, thus separating the effects of the system inputs in the latent space.
arXiv Detail & Related papers (2022-02-25T20:00:56Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
We propose an efficient model-based reinforcement learning algorithm for learning in multi-agent systems.
Our main theoretical contributions are the first general regret bounds for model-based reinforcement learning for MFC.
We provide a practical parametrization of the core optimization problem.
arXiv Detail & Related papers (2021-07-08T18:01:02Z) - Active Learning for Nonlinear System Identification with Guarantees [102.43355665393067]
We study a class of nonlinear dynamical systems whose state transitions depend linearly on a known feature embedding of state-action pairs.
We propose an active learning approach that achieves this by repeating three steps: trajectory planning, trajectory tracking, and re-estimation of the system from all available data.
We show that our method estimates nonlinear dynamical systems at a parametric rate, similar to the statistical rate of standard linear regression.
arXiv Detail & Related papers (2020-06-18T04:54:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.