Real-Time Structural Deflection Estimation in Hydraulically Actuated Systems Using 3D Flexible Multibody Simulation and DNNs
- URL: http://arxiv.org/abs/2503.07528v1
- Date: Mon, 10 Mar 2025 16:56:35 GMT
- Title: Real-Time Structural Deflection Estimation in Hydraulically Actuated Systems Using 3D Flexible Multibody Simulation and DNNs
- Authors: Qasim Khadim, Peter Manzl, Emil Kurvinen, Aki Mikkola, Grzegorz Orzechowski, Johannes Gerstmayr,
- Abstract summary: This study proposes a novel framework that has been developed to estimate real-time structural deflection in hydraulically actuated systems.<n>It is based on SLIDE, a machine-learning-based method to estimate dynamic responses of mechanical systems subjected to forced excitations.<n>It is successfully trained in less time using standard parameters from PyTorch, ADAM, the various sensor inputs, and minimal output data.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The precision, stability, and performance of lightweight high-strength steel structures in heavy machinery is affected by their highly nonlinear dynamics. This, in turn, makes control more difficult, simulation more computationally intensive, and achieving real-time autonomy, using standard approaches, impossible. Machine learning through data-driven, physics-informed and physics-inspired networks, however, promises more computationally efficient and accurate solutions to nonlinear dynamic problems. This study proposes a novel framework that has been developed to estimate real-time structural deflection in hydraulically actuated three-dimensional systems. It is based on SLIDE, a machine-learning-based method to estimate dynamic responses of mechanical systems subjected to forced excitations.~Further, an algorithm is introduced for the data acquisition from a hydraulically actuated system using randomized initial configurations and hydraulic pressures.~The new framework was tested on a hydraulically actuated flexible boom with various sensor combinations and lifting various payloads. The neural network was successfully trained in less time using standard parameters from PyTorch, ADAM optimizer, the various sensor inputs, and minimal output data. The SLIDE-trained neural network accelerated deflection estimation solutions by a factor of $10^7$ in reference to flexible multibody simulation batches and provided reasonable accuracy. These results support the studies goal of providing robust, real-time solutions for control, robotic manipulators, structural health monitoring, and automation problems.
Related papers
- SLIDE: A machine-learning based method for forced dynamic response estimation of multibody systems [42.87502453001109]
SLiding-window Initially-truncated Dynamic-response Estimator (SLIDE)
Deep learning-based method designed to estimate output sequences of mechanical or multibody systems.
Results demonstrate significant speedups from the simulation up to several millions, exceeding real-time performance substantially.
arXiv Detail & Related papers (2024-09-26T20:34:07Z) - Physics-Informed Machine Learning for Seismic Response Prediction OF Nonlinear Steel Moment Resisting Frame Structures [6.483318568088176]
PiML method integrates scientific principles and physical laws into deep neural networks to model seismic responses of nonlinear structures.
Manipulating the equation of motion helps learn system nonlinearities and confines solutions within physically interpretable results.
Result handles complex data better than existing physics-guided LSTM models and outperforms other non-physics data-driven networks.
arXiv Detail & Related papers (2024-02-28T02:16:03Z) - Controlling dynamical systems to complex target states using machine
learning: next-generation vs. classical reservoir computing [68.8204255655161]
Controlling nonlinear dynamical systems using machine learning allows to drive systems into simple behavior like periodicity but also to more complex arbitrary dynamics.
We show first that classical reservoir computing excels at this task.
In a next step, we compare those results based on different amounts of training data to an alternative setup, where next-generation reservoir computing is used instead.
It turns out that while delivering comparable performance for usual amounts of training data, next-generation RC significantly outperforms in situations where only very limited data is available.
arXiv Detail & Related papers (2023-07-14T07:05:17Z) - Hybrid quantum physics-informed neural networks for simulating computational fluid dynamics in complex shapes [37.69303106863453]
We present a hybrid quantum physics-informed neural network that simulates laminar fluid flows in 3D Y-shaped mixers.
Our approach combines the expressive power of a quantum model with the flexibility of a physics-informed neural network, resulting in a 21% higher accuracy compared to a purely classical neural network.
arXiv Detail & Related papers (2023-04-21T20:49:29Z) - Adaptive learning of effective dynamics: Adaptive real-time, online
modeling for complex systems [2.6144444305800234]
We propose a novel framework that bridges large scale simulations and reduced order models to extract and forecast adaptively effective dynamics.
AdaLED employs an autoencoder to identify reduced-order representations of the system dynamics and an ensemble of probabilistic recurrent neural networks (RNNs) as the latent time-steppertemporal.
The framework alternates between the computational solver and the surrogate, accelerating learned dynamics while leaving yet-to-be-learned dynamics regimes to the original solver.
arXiv Detail & Related papers (2023-04-04T12:05:51Z) - AttNS: Attention-Inspired Numerical Solving For Limited Data Scenarios [51.94807626839365]
We propose the attention-inspired numerical solver (AttNS) to solve differential equations due to limited data.<n>AttNS is inspired by the effectiveness of attention modules in Residual Neural Networks (ResNet) in enhancing model generalization and robustness.
arXiv Detail & Related papers (2023-02-05T01:39:21Z) - Physics-informed machine learning with differentiable programming for
heterogeneous underground reservoir pressure management [64.17887333976593]
Avoiding over-pressurization in subsurface reservoirs is critical for applications like CO2 sequestration and wastewater injection.
Managing the pressures by controlling injection/extraction are challenging because of complex heterogeneity in the subsurface.
We use differentiable programming with a full-physics model and machine learning to determine the fluid extraction rates that prevent over-pressurization.
arXiv Detail & Related papers (2022-06-21T20:38:13Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
Accurately modeling quadrotor's system dynamics is critical for guaranteeing agile, safe, and stable navigation.
We present a novel Physics-Inspired Temporal Convolutional Network (PI-TCN) approach to learning quadrotor's system dynamics purely from robot experience.
Our approach combines the expressive power of sparse temporal convolutions and dense feed-forward connections to make accurate system predictions.
arXiv Detail & Related papers (2022-06-07T13:51:35Z) - Real-time Neural-MPC: Deep Learning Model Predictive Control for
Quadrotors and Agile Robotic Platforms [59.03426963238452]
We present Real-time Neural MPC, a framework to efficiently integrate large, complex neural network architectures as dynamics models within a model-predictive control pipeline.
We show the feasibility of our framework on real-world problems by reducing the positional tracking error by up to 82% when compared to state-of-the-art MPC approaches without neural network dynamics.
arXiv Detail & Related papers (2022-03-15T09:38:15Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
We propose a structured latent ODE model that captures system input variations within its latent representation.
Building on a static variable specification, our model learns factors of variation for each input to the system, thus separating the effects of the system inputs in the latent space.
arXiv Detail & Related papers (2022-02-25T20:00:56Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
We consider the problem of data-assisted forecasting of chaotic dynamical systems when the available data is noisy partial measurements.
We show that by using partial measurements of the state of the dynamical system, we can train a machine learning model to improve predictions made by an imperfect knowledge-based model.
arXiv Detail & Related papers (2021-02-15T19:56:48Z) - Data-Efficient Learning for Complex and Real-Time Physical Problem
Solving using Augmented Simulation [49.631034790080406]
We present a task for navigating a marble to the center of a circular maze.
We present a model that learns to move a marble in the complex environment within minutes of interacting with the real system.
arXiv Detail & Related papers (2020-11-14T02:03:08Z) - DynNet: Physics-based neural architecture design for linear and
nonlinear structural response modeling and prediction [2.572404739180802]
In this study, a physics-based recurrent neural network model is designed that is able to learn the dynamics of linear and nonlinear multiple degrees of freedom systems.
The model is able to estimate a complete set of responses, including displacement, velocity, acceleration, and internal forces.
arXiv Detail & Related papers (2020-07-03T17:05:35Z) - Multiscale Simulations of Complex Systems by Learning their Effective
Dynamics [10.52078600986485]
We present a systematic framework that bridges large scale simulations and reduced order models to Learn the Effective Dynamics.
LED provides a novel potent modality for the accurate prediction of complex systems.
LED is applicable to systems ranging from chemistry to fluid mechanics and reduces computational effort by up to two orders of magnitude.
arXiv Detail & Related papers (2020-06-24T02:35:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.