論文の概要: Deep-ER: Deep Learning ECCENTRIC Reconstruction for fast high-resolution neurometabolic imaging
- arxiv url: http://arxiv.org/abs/2409.18303v1
- Date: Thu, 26 Sep 2024 21:20:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-06 07:10:35.815445
- Title: Deep-ER: Deep Learning ECCENTRIC Reconstruction for fast high-resolution neurometabolic imaging
- Title(参考訳): Deep-ER:高速高分解能脳代謝イメージングのためのディープラーニング心電図再構成
- Authors: Paul Weiser, Georg Langs, Wolfgang Bogner, Stanislav Motyka, Bernhard Strasser, Polina Golland, Nalini Singh, Jorg Dietrich, Erik Uhlmann, Tracy Batchelor, Daniel Cahill, Malte Hoffmann, Antoine Klauser, Ovidiu C. Andronesi,
- Abstract要約: 変化した神経代謝は、多くの神経疾患や脳がんにおいて重要な病理機構である。
ディープラーニングECCENTRIC再構成は、従来の方法よりも600倍高速な再構築を提供する。
- 参考スコア(独自算出の注目度): 3.3771864230870072
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Introduction: Altered neurometabolism is an important pathological mechanism in many neurological diseases and brain cancer, which can be mapped non-invasively by Magnetic Resonance Spectroscopic Imaging (MRSI). Advanced MRSI using non-cartesian compressed-sense acquisition enables fast high-resolution metabolic imaging but has lengthy reconstruction times that limits throughput and needs expert user interaction. Here, we present a robust and efficient Deep Learning reconstruction to obtain high-quality metabolic maps. Methods: Fast high-resolution whole-brain metabolic imaging was performed at 3.4 mm$^3$ isotropic resolution with acquisition times between 4:11-9:21 min:s using ECCENTRIC pulse sequence on a 7T MRI scanner. Data were acquired in a high-resolution phantom and 27 human participants, including 22 healthy volunteers and 5 glioma patients. A deep neural network using recurring interlaced convolutional layers with joint dual-space feature representation was developed for deep learning ECCENTRIC reconstruction (Deep-ER). 21 subjects were used for training and 6 subjects for testing. Deep-ER performance was compared to conventional iterative Total Generalized Variation reconstruction using image and spectral quality metrics. Results: Deep-ER demonstrated 600-fold faster reconstruction than conventional methods, providing improved spatial-spectral quality and metabolite quantification with 12%-45% (P<0.05) higher signal-to-noise and 8%-50% (P<0.05) smaller Cramer-Rao lower bounds. Metabolic images clearly visualize glioma tumor heterogeneity and boundary. Conclusion: Deep-ER provides efficient and robust reconstruction for sparse-sampled MRSI. The accelerated acquisition-reconstruction MRSI is compatible with high-throughput imaging workflow. It is expected that such improved performance will facilitate basic and clinical MRSI applications.
- Abstract(参考訳): 序説: 交互神経代謝は、多くの神経疾患や脳腫瘍において重要な病態機構であり、MRSI(磁気共鳴分光画像)によって非侵襲的にマッピングできる。
非カルテシアン圧縮センスによる高度なMRSIは、高速な高分解能代謝イメージングを可能にするが、スループットを制限し、専門家のユーザインタラクションを必要とする長い再構成時間を持つ。
本稿では,高品質なメタボリックマップを得るために,堅牢で効率的なDeep Learning再構成を提案する。
方法:高速高分解能全脳代謝イメージングを3.4 mm$^3$等方分解能で4:11-9:21 min:sの取得時間で7T MRIスキャナー上でECCENTRICパルスシーケンスを用いて行った。
患者は健常者22名,グリオーマ患者5名を含む27名であった。
深層学習型ECCENTRIC再構成 (Deep-ER) のために, 二重空間特徴表現を伴う繰り返し畳み込み畳み込み層を用いたディープニューラルネットワークを開発した。
被験者は21名, 被験者は6名であった。
画像とスペクトル品質の指標を用いた従来の反復的全一般化変分再構成と比較した。
結果:Deep-ERは従来の方法よりも600倍高速に再構成し,12%-45%(P<0.05)高信号量,8%-50%(P<0.05)小クレーマー-ラオ低域の代謝物定量化を実現した。
代謝像はグリオーマ腫瘍の異質性と境界をはっきりと可視化する。
結語:Deep-ERはスパースサンプリングMRSIの効率的で堅牢な再構築を提供する。
高速化された取得/再構成MRSIは、高スループットイメージングワークフローと互換性がある。
このような改善がMRSIの基礎的および臨床的応用を促進することが期待されている。
関連論文リスト
- TopoTxR: A topology-guided deep convolutional network for breast parenchyma learning on DCE-MRIs [49.69047720285225]
そこで本研究では,乳房側葉構造をよりよく近似するために,マルチスケールのトポロジ構造を明示的に抽出する新しいトポロジカルアプローチを提案する。
VICTREファントム乳房データセットを用いてemphTopoTxRを実験的に検証した。
本研究の質的および定量的分析は,乳房組織における画像診断におけるトポロジカルな挙動を示唆するものである。
論文 参考訳(メタデータ) (2024-11-05T19:35:10Z) - Deep Learning-based Intraoperative MRI Reconstruction [0.0]
深層学習(DL)モデルは,iMRIプロトコルのデータを模倣するために,高速MRIニューロデータセットを用いて訓練された。
従来の圧縮感 (CS) 法と訓練されたDL再構成法との比較検討を行った。
読影者1,2,3症例のうち,33/40例,39/40例,8例のCS再建に対して,DL再建は好意的あるいは好意的であった。
論文 参考訳(メタデータ) (2024-01-23T13:57:50Z) - Rotational Augmented Noise2Inverse for Low-dose Computed Tomography
Reconstruction [83.73429628413773]
改良された深層学習手法は、画像のノイズを除去する能力を示しているが、正確な地上の真実を必要とする。
畳み込みニューラルネットワーク(CNN)のトレーニングに基礎的真理を必要としないLDCTのための新しい自己教師型フレームワークを提案する。
数値および実験結果から,Sparse View を用いた N2I の再構成精度は低下しており,提案手法は異なる範囲のサンプリング角度で画像品質を向上する。
論文 参考訳(メタデータ) (2023-12-19T22:40:51Z) - Coarse-Super-Resolution-Fine Network (CoSF-Net): A Unified End-to-End
Neural Network for 4D-MRI with Simultaneous Motion Estimation and
Super-Resolution [21.75329634476446]
我々は,高分解能ネットワーク(CoSF-Net)と呼ばれる新しいディープラーニングフレームワークを開発した。
既存のネットワークと最先端の3つのアルゴリズムと比較して、CoSF-Netは4D-MRIの呼吸相間の変形可能なベクトル場を正確に推定するだけでなく、解剖学的特徴を増強した4D-MRIの空間分解能も同時に改善した。
論文 参考訳(メタデータ) (2022-11-21T01:42:51Z) - A Long Short-term Memory Based Recurrent Neural Network for
Interventional MRI Reconstruction [50.1787181309337]
本稿では,畳み込み長短期記憶(Conv-LSTM)に基づくリカレントニューラルネットワーク(Recurrent Neural Network, RNN)を提案する。
提案アルゴリズムは,DBSのリアルタイムi-MRIを実現する可能性があり,汎用的なMR誘導介入に使用できる。
論文 参考訳(メタデータ) (2022-03-28T14:03:45Z) - High-Resolution Pelvic MRI Reconstruction Using a Generative Adversarial
Network with Attention and Cyclic Loss [3.4358954898228604]
超解像法はMRIの高速化に優れた性能を示した。
場合によっては、スキャン時間が長い場合でも高解像度画像を得るのは困難である。
我々は,周期的損失と注意機構を有するGAN(Generative Adversarial Network)を用いた新しい超解像法を提案した。
論文 参考訳(メタデータ) (2021-07-21T10:07:22Z) - 20-fold Accelerated 7T fMRI Using Referenceless Self-Supervised Deep
Learning Reconstruction [0.487576911714538]
脳全体の高時間分解能は、fMRIにおける神経活動の正確な解決に不可欠である。
ディープラーニング(DL)再構成技術は近年,高速度MRI画像の改善に関心を寄せている。
本研究では,5倍のSMSと4倍の面内加速度7T fMRIデータを用いて物理誘導型DL再構成を行う。
論文 参考訳(メタデータ) (2021-05-12T17:39:16Z) - Adaptive Gradient Balancing for UndersampledMRI Reconstruction and
Image-to-Image Translation [60.663499381212425]
本研究では,新しい適応勾配バランス手法を併用したwasserstein生成逆ネットワークを用いて,画質の向上を図る。
MRIでは、他の技術よりも鮮明な画像を生成する高品質の再構築を維持しながら、アーティファクトを最小限に抑えます。
論文 参考訳(メタデータ) (2021-04-05T13:05:22Z) - ShuffleUNet: Super resolution of diffusion-weighted MRIs using deep
learning [47.68307909984442]
SISR(Single Image Super-Resolution)は、1つの低解像度入力画像から高解像度(HR)の詳細を得る技術である。
ディープラーニングは、大きなデータセットから事前知識を抽出し、低解像度の画像から優れたMRI画像を生成します。
論文 参考訳(メタデータ) (2021-02-25T14:52:23Z) - Cine Cardiac MRI Motion Artifact Reduction Using a Recurrent Neural
Network [18.433956246011466]
本研究では,運動ブラスト心画像から空間的特徴と時間的特徴を同時に抽出するリカレントニューラルネットワークを提案する。
実験の結果,2つの臨床検査データセットの画質が有意に向上した。
論文 参考訳(メタデータ) (2020-06-23T01:55:57Z) - 4D Deep Learning for Multiple Sclerosis Lesion Activity Segmentation [49.32653090178743]
我々は,MRIボリュームの履歴を用いて,この問題をフル4次元ディープラーニングに拡張することで,性能が向上するかどうか検討する。
提案手法は, 病変側真陽性率0.84, 病変側偽陽性率0.19で従来手法より優れていた。
論文 参考訳(メタデータ) (2020-04-20T11:41:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。