Harnessing and modulating chaos to sample from neural generative models
- URL: http://arxiv.org/abs/2409.18329v1
- Date: Thu, 26 Sep 2024 22:52:26 GMT
- Title: Harnessing and modulating chaos to sample from neural generative models
- Authors: Rishidev Chaudhuri, Vivek Handebagh,
- Abstract summary: We show how neural chaos might play a functional role in allowing the brain to learn and sample from generative models.
We construct architectures that combine a classic model of neural chaos either with a canonical generative modeling architecture or with energy-based models of neural memory.
- Score: 2.048226951354646
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Chaos is generic in strongly-coupled recurrent networks of model neurons, and thought to be an easily accessible dynamical regime in the brain. While neural chaos is typically seen as an impediment to robust computation, we show how such chaos might play a functional role in allowing the brain to learn and sample from generative models. We construct architectures that combine a classic model of neural chaos either with a canonical generative modeling architecture or with energy-based models of neural memory. We show that these architectures have appealing properties for sampling, including easy biologically-plausible control of sampling rates via overall gain modulation.
Related papers
- Langevin Flows for Modeling Neural Latent Dynamics [81.81271685018284]
We introduce LangevinFlow, a sequential Variational Auto-Encoder where the time evolution of latent variables is governed by the underdamped Langevin equation.<n>Our approach incorporates physical priors -- such as inertia, damping, a learned potential function, and forces -- to represent both autonomous and non-autonomous processes in neural systems.<n>Our method outperforms state-of-the-art baselines on synthetic neural populations generated by a Lorenz attractor.
arXiv Detail & Related papers (2025-07-15T17:57:48Z) - Recurrent convolutional neural networks for non-adiabatic dynamics of quantum-classical systems [1.2972104025246092]
We present a RNN model based on convolutional neural networks for modeling the nonlinear non-adiabatic dynamics of hybrid quantum-classical systems.
validation studies show that the trained PARC model could reproduce the space-time evolution of a one-dimensional semi-classical Holstein model.
arXiv Detail & Related papers (2024-12-09T16:23:25Z) - On the Trade-off Between Efficiency and Precision of Neural Abstraction [62.046646433536104]
Neural abstractions have been recently introduced as formal approximations of complex, nonlinear dynamical models.
We employ formal inductive synthesis procedures to generate neural abstractions that result in dynamical models with these semantics.
arXiv Detail & Related papers (2023-07-28T13:22:32Z) - Gaussian Process Surrogate Models for Neural Networks [6.8304779077042515]
In science and engineering, modeling is a methodology used to understand complex systems whose internal processes are opaque.
We construct a class of surrogate models for neural networks using Gaussian processes.
We demonstrate our approach captures existing phenomena related to the spectral bias of neural networks, and then show that our surrogate models can be used to solve practical problems.
arXiv Detail & Related papers (2022-08-11T20:17:02Z) - Quadratic models for understanding catapult dynamics of neural networks [15.381097076708535]
We show that recently proposed Neural Quadratic Models can exhibit the "catapult phase" that arises when training such models with large learning rates.
Our analysis further demonstrates that quadratic models can be an effective tool for analysis of neural networks.
arXiv Detail & Related papers (2022-05-24T05:03:06Z) - Neural annealing and visualization of autoregressive neural networks in
the Newman-Moore model [0.45119235878273]
We show that glassy dynamics exhibited by the Newman-Moore model likely manifests itself through trainability issues and mode collapse in the optimization landscape.
These findings indicate that the glassy dynamics exhibited by the Newman-Moore model caused by the presence of fracton excitations in the configurational space likely manifests itself through trainability issues and mode collapse in the optimization landscape.
arXiv Detail & Related papers (2022-04-24T13:15:28Z) - An advanced spatio-temporal convolutional recurrent neural network for
storm surge predictions [73.4962254843935]
We study the capability of artificial neural network models to emulate storm surge based on the storm track/size/intensity history.
This study presents a neural network model that can predict storm surge, informed by a database of synthetic storm simulations.
arXiv Detail & Related papers (2022-04-18T23:42:18Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
We introduce a new class of physics-informed neural networks-EINN-crafted for epidemic forecasting.
We investigate how to leverage both the theoretical flexibility provided by mechanistic models as well as the data-driven expressability afforded by AI models.
arXiv Detail & Related papers (2022-02-21T18:59:03Z) - Evolving spiking neuron cellular automata and networks to emulate in
vitro neuronal activity [0.0]
We produce spiking neural systems that emulate the patterns of behavior of biological neurons in vitro.
Our models were able to produce a level of network-wide synchrony.
The genomes of the top-performing models indicate the excitability and density of connections in the model play an important role in determining the complexity of the produced activity.
arXiv Detail & Related papers (2021-10-15T17:55:04Z) - Mapping and Validating a Point Neuron Model on Intel's Neuromorphic
Hardware Loihi [77.34726150561087]
We investigate the potential of Intel's fifth generation neuromorphic chip - Loihi'
Loihi is based on the novel idea of Spiking Neural Networks (SNNs) emulating the neurons in the brain.
We find that Loihi replicates classical simulations very efficiently and scales notably well in terms of both time and energy performance as the networks get larger.
arXiv Detail & Related papers (2021-09-22T16:52:51Z) - Modelling Neuronal Behaviour with Time Series Regression: Recurrent
Neural Networks on C. Elegans Data [0.0]
We show how the nervous system of C. Elegans can be modelled and simulated with data-driven models using different neural network architectures.
We show that GRU models with a hidden layer size of 4 units are able to accurately reproduce with high accuracy the system's response to very different stimuli.
arXiv Detail & Related papers (2021-07-01T10:39:30Z) - Towards a Predictive Processing Implementation of the Common Model of
Cognition [79.63867412771461]
We describe an implementation of the common model of cognition grounded in neural generative coding and holographic associative memory.
The proposed system creates the groundwork for developing agents that learn continually from diverse tasks as well as model human performance at larger scales.
arXiv Detail & Related papers (2021-05-15T22:55:23Z) - The Neural Coding Framework for Learning Generative Models [91.0357317238509]
We propose a novel neural generative model inspired by the theory of predictive processing in the brain.
In a similar way, artificial neurons in our generative model predict what neighboring neurons will do, and adjust their parameters based on how well the predictions matched reality.
arXiv Detail & Related papers (2020-12-07T01:20:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.