論文の概要: Defect Prediction with Content-based Features
- arxiv url: http://arxiv.org/abs/2409.18365v1
- Date: Fri, 27 Sep 2024 00:49:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-06 06:41:07.793531
- Title: Defect Prediction with Content-based Features
- Title(参考訳): コンテンツに基づく特徴量による欠陥予測
- Authors: Hung Viet Pham, Tung Thanh Nguyen,
- Abstract要約: 従来の欠陥予測アプローチでは、ソフトウェアシステムの設計や実装の複雑さを測定するメトリクスを使うことが多い。
本稿では,ソースコードの内容に基づく異なるアプローチについて検討する。
- 参考スコア(独自算出の注目度): 3.765563438775143
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Traditional defect prediction approaches often use metrics that measure the complexity of the design or implementing code of a software system, such as the number of lines of code in a source file. In this paper, we explore a different approach based on content of source code. Our key assumption is that source code of a software system contains information about its technical aspects and those aspects might have different levels of defect-proneness. Thus, content-based features such as words, topics, data types, and package names extracted from a source code file could be used to predict its defects. We have performed an extensive empirical evaluation and found that: i) such content-based features have higher predictive power than code complexity metrics and ii) the use of feature selection, reduction, and combination further improves the prediction performance.
- Abstract(参考訳): 従来の欠陥予測アプローチでは、ソースファイル内のコード行数など、ソフトウェアシステムの設計や実装の複雑さを測定するメトリクスを使用することが多い。
本稿では,ソースコードの内容に基づく異なるアプローチについて検討する。
私たちの重要な前提は、ソフトウェアシステムのソースコードには、その技術的側面に関する情報が含まれており、それらの側面は、欠陥発生のレベルが異なるかもしれないということです。
したがって、ソースコードファイルから抽出された単語、トピック、データタイプ、パッケージ名などのコンテンツベースの機能を使用して、その欠陥を予測することができる。
我々は広範な経験的評価を行い、以下の結果を得た。
一 この内容に基づく特徴は、コードの複雑さの指標よりも高い予測力を有する。
二 特徴選択、縮小及び組み合わせの使用により、予測性能がさらに向上する。
関連論文リスト
- Understanding Code Understandability Improvements in Code Reviews [79.16476505761582]
GitHub上のJavaオープンソースプロジェクトからの2,401のコードレビューコメントを分析した。
改善提案の83.9%が承認され、統合され、1%未満が後に復活した。
論文 参考訳(メタデータ) (2024-10-29T12:21:23Z) - AlchemistCoder: Harmonizing and Eliciting Code Capability by Hindsight Tuning on Multi-source Data [64.69872638349922]
本稿では、マルチソースデータに微調整されたコード生成と一般化機能を備えたコードLLMのシリーズであるAlchemistCoderを紹介する。
本稿では,データ構築過程を微調整データに組み込んで,命令の進化,データフィルタリング,コードレビューなどのコード理解タスクを提案する。
論文 参考訳(メタデータ) (2024-05-29T16:57:33Z) - Towards Understanding the Impact of Code Modifications on Software Quality Metrics [1.2277343096128712]
本研究の目的は、コード修正がソフトウェアの品質指標に与える影響を評価し、解釈することである。
基礎となる仮説は、ソフトウェア品質のメトリクスに類似した変更を誘発するコード修正は、異なるクラスタにグループ化できる、というものである。
結果は、コード修正の異なるクラスタを明らかにし、それぞれに簡潔な記述が伴い、ソフトウェアの品質指標に対する全体的な影響を明らかにした。
論文 参考訳(メタデータ) (2024-04-05T08:41:18Z) - Enhancing Source Code Representations for Deep Learning with Static
Analysis [10.222207222039048]
本稿では,静的解析とバグレポートやデザインパターンなどのコンテキストを,ディープラーニングモデルのためのソースコード表現に統合する方法について検討する。
我々はASTNN(Abstract Syntax Tree-based Neural Network)法を用いて,バグレポートやデザインパターンから得られたコンテキスト情報を追加して拡張する。
提案手法はソースコードの表現と処理を改善し,タスク性能を向上させる。
論文 参考訳(メタデータ) (2024-02-14T20:17:04Z) - BAFLineDP: Code Bilinear Attention Fusion Framework for Line-Level
Defect Prediction [0.0]
本稿では,BAFLineDP(Code Bilinear attention fusion framework)に基づくラインレベルの欠陥予測手法を提案する。
以上の結果から,BAFLineDPは現在のファイルレベルおよびラインレベルの欠陥予測手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2024-02-11T09:01:42Z) - Encoding Version History Context for Better Code Representation [13.045078976464307]
本稿では,コードクローンを予測し,コード分類を行うために,バージョン履歴からコンテキスト情報を符号化することの潜在的な利点について,予備的な証拠を示す。
技術が一貫して機能するためには、コンテキスト、集約、モデルの異なる組み合わせを使用して、より大きなコードベースに関する包括的な調査を行う必要があります。
論文 参考訳(メタデータ) (2024-02-06T07:35:36Z) - SparseCoder: Identifier-Aware Sparse Transformer for File-Level Code
Summarization [51.67317895094664]
本稿では,大規模なソースコードプロジェクトの理解と維持を支援するファイルレベルのコード要約について検討する。
長いコードシーケンスを効果的に処理するための識別子対応スパース変換器であるSparseCoderを提案する。
論文 参考訳(メタデータ) (2024-01-26T09:23:27Z) - Investigating the Impact of Vocabulary Difficulty and Code Naturalness
on Program Comprehension [3.35803394416914]
本研究の目的は,言語習得の観点から可読性と可読性を評価することである。
我々は,それらの相関関係を理解するために統計的解析を行い,可読性および可読性予測法の性能向上にコード自然性および語彙難易度を用いることができるか分析する。
論文 参考訳(メタデータ) (2023-08-25T15:15:00Z) - Language Model Decoding as Likelihood-Utility Alignment [54.70547032876017]
モデルの有効性がタスク固有の実用性の概念とどのように一致しているかについて、暗黙の仮定に基づいて、デコード戦略をグループ化する分類法を導入する。
具体的には、様々なタスクの集合における予測の可能性と有用性の相関を解析することにより、提案された分類を裏付ける最初の実証的証拠を提供する。
論文 参考訳(メタデータ) (2022-10-13T17:55:51Z) - Enhancing Semantic Code Search with Multimodal Contrastive Learning and
Soft Data Augmentation [50.14232079160476]
コード検索のためのマルチモーダルコントラスト学習とソフトデータ拡張を用いた新しい手法を提案する。
我々は,6つのプログラミング言語を用いた大規模データセットにおけるアプローチの有効性を評価するために,広範囲な実験を行った。
論文 参考訳(メタデータ) (2022-04-07T08:49:27Z) - A Transformer-based Approach for Source Code Summarization [86.08359401867577]
コードトークン間のペア関係をモデル化することにより,要約のためのコード表現を学習する。
アプローチは単純であるにもかかわらず、最先端技術よりもかなりの差があることが示される。
論文 参考訳(メタデータ) (2020-05-01T23:29:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。