論文の概要: CurricuLLM: Automatic Task Curricula Design for Learning Complex Robot Skills using Large Language Models
- arxiv url: http://arxiv.org/abs/2409.18382v1
- Date: Fri, 27 Sep 2024 01:48:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-06 06:41:07.771103
- Title: CurricuLLM: Automatic Task Curricula Design for Learning Complex Robot Skills using Large Language Models
- Title(参考訳): CurricuLLM:大規模言語モデルを用いた複雑なロボットスキル学習のための自動タスクカリキュラム設計
- Authors: Kanghyun Ryu, Qiayuan Liao, Zhongyu Li, Koushil Sreenath, Negar Mehr,
- Abstract要約: CurricuLLMは複雑なロボット制御タスクのためのカリキュラム学習ツールである。
自然言語形式のタスク学習を支援するサブタスクを生成する。
また、サブタスクの自然言語記述を実行可能なコードに変換する。
CurricuLLMは複雑なロボット制御タスクの学習を支援する。
- 参考スコア(独自算出の注目度): 19.73329768987112
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Curriculum learning is a training mechanism in reinforcement learning (RL) that facilitates the achievement of complex policies by progressively increasing the task difficulty during training. However, designing effective curricula for a specific task often requires extensive domain knowledge and human intervention, which limits its applicability across various domains. Our core idea is that large language models (LLMs), with their extensive training on diverse language data and ability to encapsulate world knowledge, present significant potential for efficiently breaking down tasks and decomposing skills across various robotics environments. Additionally, the demonstrated success of LLMs in translating natural language into executable code for RL agents strengthens their role in generating task curricula. In this work, we propose CurricuLLM, which leverages the high-level planning and programming capabilities of LLMs for curriculum design, thereby enhancing the efficient learning of complex target tasks. CurricuLLM consists of: (Step 1) Generating sequence of subtasks that aid target task learning in natural language form, (Step 2) Translating natural language description of subtasks in executable task code, including the reward code and goal distribution code, and (Step 3) Evaluating trained policies based on trajectory rollout and subtask description. We evaluate CurricuLLM in various robotics simulation environments, ranging from manipulation, navigation, and locomotion, to show that CurricuLLM can aid learning complex robot control tasks. In addition, we validate humanoid locomotion policy learned through CurricuLLM in real-world. The code is provided in https://github.com/labicon/CurricuLLM
- Abstract(参考訳): カリキュラム学習(英: Curriculum learning)は、強化学習(RL)における訓練機構であり、訓練中のタスクの難易度を徐々に増加させ、複雑な政策の達成を促進する。
しかし、特定のタスクに有効なカリキュラムを設計するには、広範囲のドメイン知識と人的介入が必要であり、様々なドメインにまたがる適用性が制限される。
私たちの中核となる考え方は、多言語データに対する広範なトレーニングと世界知識をカプセル化する能力によって、タスクを効率的に分解し、さまざまなロボティクス環境にまたがるスキルを分解する大きな可能性を秘めている、ということです。
さらに、自然言語をRLエージェントの実行可能なコードに翻訳するLLMの実証的な成功により、タスクキュリキュラの生成におけるそれらの役割が強化される。
本研究では,カリキュラム設計におけるLLMの高レベル計画とプログラミング機能を活用するCurricuLLMを提案する。
CurricuLLM は: (ステップ)
1)自然言語形式のタスク学習を支援するサブタスクの生成(ステップ)
2)報酬コードと目標配分コードを含む実行可能タスクコードにおけるサブタスクの自然言語記述の翻訳と(ステップ)
3)軌道展開とサブタスク記述に基づく訓練された政策の評価。
操作,ナビゲーション,移動など,様々なロボットシミュレーション環境におけるCurricuLLMの評価を行い,複雑なロボット制御タスクの学習を支援することを示す。
さらに,CurricuLLMで学習した実世界のヒューマノイド移動政策を検証する。
コードはhttps://github.com/labicon/CurricuLLMで提供されている。
関連論文リスト
- Plan-Seq-Learn: Language Model Guided RL for Solving Long Horizon Robotics Tasks [50.27313829438866]
Plan-Seq-Learn (PSL) は、抽象言語と学習した低レベル制御の間のギャップを埋めるためにモーションプランニングを使用するモジュラーアプローチである。
PSLは85%以上の成功率、言語ベース、古典的、エンドツーエンドのアプローチを達成している。
論文 参考訳(メタデータ) (2024-05-02T17:59:31Z) - Large Language Models for Orchestrating Bimanual Robots [19.60907949776435]
本稿では,Language-based Bimanual Orchestration (LABOR)を提案する。
NICOLヒューマノイドロボットを用いた2種類の長距離作業のシミュレーション実験により,本手法の評価を行った。
論文 参考訳(メタデータ) (2024-04-02T15:08:35Z) - Natural Language as Policies: Reasoning for Coordinate-Level Embodied Control with LLMs [7.746160514029531]
ロボットのタスク計画問題に対処するLLMによる実験結果を示す。
提案手法はタスクとシーンオブジェクトのテキスト記述を取得し,自然言語推論によるタスクプランニングを定式化する。
提案手法はマルチモーダル・プロンプト・シミュレーション・ベンチマークを用いて評価する。
論文 参考訳(メタデータ) (2024-03-20T17:58:12Z) - Interactive Planning Using Large Language Models for Partially
Observable Robotics Tasks [54.60571399091711]
大きな言語モデル(LLM)は、オープン語彙タスクを実行するロボットエージェントを作成することで、驚くべき成果を上げている。
LLMを用いた部分的に観測可能なタスクのための対話型計画手法を提案する。
論文 参考訳(メタデータ) (2023-12-11T22:54:44Z) - TaskBench: Benchmarking Large Language Models for Task Automation [82.2932794189585]
タスク自動化における大規模言語モデル(LLM)の機能を評価するためのフレームワークであるTaskBenchを紹介する。
具体的には、タスクの分解、ツールの選択、パラメータ予測を評価する。
提案手法は, 自動構築と厳密な人的検証を組み合わせることで, 人的評価との整合性を確保する。
論文 参考訳(メタデータ) (2023-11-30T18:02:44Z) - LMRL Gym: Benchmarks for Multi-Turn Reinforcement Learning with Language
Models [56.25156596019168]
本稿では,LMRL-Gymベンチマークを用いて,大規模言語モデル(LLM)のマルチターンRLの評価を行う。
我々のベンチマークは8つの異なる言語タスクで構成されており、複数ラウンドの言語相互作用が必要であり、オープンエンド対話やテキストゲームにおける様々なタスクをカバーする。
論文 参考訳(メタデータ) (2023-11-30T03:59:31Z) - LARG, Language-based Automatic Reward and Goal Generation [8.404316955848602]
テキストベースのタスク記述をそれに対応する報酬とゴール生成関数に変換するアプローチを開発する。
ロボット操作に対する我々のアプローチを評価し、スケーラブルな方法でポリシーを訓練および実行できることを実証する。
論文 参考訳(メタデータ) (2023-06-19T14:52:39Z) - AutoTAMP: Autoregressive Task and Motion Planning with LLMs as Translators and Checkers [20.857692296678632]
人間とロボットの効果的なインタラクションには、ロボットは複雑な長期的タスクを理解し、計画し、実行する必要がある。
大規模言語モデルの最近の進歩は、自然言語をロボットのアクションシーケンスに変換することを約束している。
本研究では,複雑なタスク領域において,LLMをプランナとして用いる手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-06-10T21:58:29Z) - Instruct2Act: Mapping Multi-modality Instructions to Robotic Actions
with Large Language Model [63.66204449776262]
Instruct2Actは、ロボット操作タスクのシーケンシャルアクションにマルチモーダル命令をマッピングするフレームワークである。
我々のアプローチは、様々な命令のモダリティや入力タイプを調節する上で、調整可能で柔軟なものである。
我々のゼロショット法は、いくつかのタスクにおいて、最先端の学習ベースのポリシーよりも優れていた。
論文 参考訳(メタデータ) (2023-05-18T17:59:49Z) - Grounding Language with Visual Affordances over Unstructured Data [26.92329260907805]
本研究では,非構造化,オフライン,リセットのないデータから,言語条件のロボットスキルを効率的に学習するための新しい手法を提案する。
我々は、言語による全データの1%しか必要としない自己教師型ビジュオ言語割当モデルを利用する。
提案手法は,従来の手法よりも桁違いに少ないデータで,リアルタイムに長時間の多層タスクを完了できることがわかった。
論文 参考訳(メタデータ) (2022-10-04T21:16:48Z) - ProgPrompt: Generating Situated Robot Task Plans using Large Language
Models [68.57918965060787]
大規模言語モデル(LLM)は、タスク計画中の潜在的な次のアクションを評価するために使用することができる。
本稿では, プログラム型LCMプロンプト構造を用いて, 配置環境間での計画生成機能を実現する。
論文 参考訳(メタデータ) (2022-09-22T20:29:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。