Multimodal Trajectory Prediction for Autonomous Driving on Unstructured Roads using Deep Convolutional Network
- URL: http://arxiv.org/abs/2409.18399v1
- Date: Fri, 27 Sep 2024 02:29:02 GMT
- Title: Multimodal Trajectory Prediction for Autonomous Driving on Unstructured Roads using Deep Convolutional Network
- Authors: Lei Li, Zhifa Chen, Jian Wang, Bin Zhou, Guizhen Yu, Xiaoxuan Chen,
- Abstract summary: The application of autonomous driving in open-pit mining has garnered increasing attention for achieving safe and efficient transportation.
A method is proposed to predict multiple possible trajectories and their probabilities of the target vehicle.
The method underwent offline testing on a dataset specifically designed for autonomous driving scenarios in open-pit mining.
- Score: 15.950227451262919
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, the application of autonomous driving in open-pit mining has garnered increasing attention for achieving safe and efficient mineral transportation. Compared to urban structured roads, unstructured roads in mining sites have uneven boundaries and lack clearly defined lane markings. This leads to a lack of sufficient constraint information for predicting the trajectories of other human-driven vehicles, resulting in higher uncertainty in trajectory prediction problems. A method is proposed to predict multiple possible trajectories and their probabilities of the target vehicle. The surrounding environment and historical trajectories of the target vehicle are encoded as a rasterized image, which is used as input to our deep convolutional network to predict the target vehicle's multiple possible trajectories. The method underwent offline testing on a dataset specifically designed for autonomous driving scenarios in open-pit mining and was compared and evaluated against physics-based method. The open-source code and data are available at https://github.com/LLsxyc/mine_motion_prediction.git
Related papers
- MapsTP: HD Map Images Based Multimodal Trajectory Prediction for Automated Vehicles [8.229161517598373]
We leverage ResNet-50 to extract image features from high-definition map data and use IMU sensor data to calculate speed, acceleration, and yaw rate.
A temporal probabilistic network is employed to compute potential trajectories, selecting the most accurate and highly probable trajectory paths.
arXiv Detail & Related papers (2024-07-08T10:45:30Z) - Uncertainty-Aware DRL for Autonomous Vehicle Crowd Navigation in Shared Space [3.487370856323828]
This work introduces an integrated prediction and planning approach that incorporates the uncertainties of predicted pedestrian states in the training of a model-free DRL algorithm.
A novel reward function encourages the AV to respect pedestrians' personal space, decrease speed during close approaches, and minimize the collision probability with their predicted paths.
Results show a 40% decrease in collision rate and a 15% increase in minimum distance to pedestrians compared to the state of the art model that does not account for prediction uncertainty.
arXiv Detail & Related papers (2024-05-22T20:09:21Z) - Implicit Occupancy Flow Fields for Perception and Prediction in
Self-Driving [68.95178518732965]
A self-driving vehicle (SDV) must be able to perceive its surroundings and predict the future behavior of other traffic participants.
Existing works either perform object detection followed by trajectory of the detected objects, or predict dense occupancy and flow grids for the whole scene.
This motivates our unified approach to perception and future prediction that implicitly represents occupancy and flow over time with a single neural network.
arXiv Detail & Related papers (2023-08-02T23:39:24Z) - Navigating Uncertainty: The Role of Short-Term Trajectory Prediction in
Autonomous Vehicle Safety [3.3659635625913564]
We have developed a dataset for short-term trajectory prediction tasks using the CARLA simulator.
This dataset is extensive and incorporates what is considered complex scenarios - pedestrians crossing the road, vehicles overtaking.
An end-to-end short-term trajectory prediction model using convolutional neural networks (CNN) and long short-term memory (LSTM) networks has also been developed.
arXiv Detail & Related papers (2023-07-11T14:28:33Z) - Multi-Vehicle Trajectory Prediction at Intersections using State and
Intention Information [50.40632021583213]
Traditional approaches to prediction of future trajectory of road agents rely on knowing information about their past trajectory.
This work instead relies on having knowledge of the current state and intended direction to make predictions for multiple vehicles at intersections.
Message passing of this information between the vehicles provides each one of them a more holistic overview of the environment.
arXiv Detail & Related papers (2023-01-06T15:13:23Z) - Safe Real-World Autonomous Driving by Learning to Predict and Plan with
a Mixture of Experts [3.2230833657560503]
We propose a distribution over multiple future trajectories for both the self-driving vehicle and other road agents.
During inference, we select the planning trajectory that minimizes a cost taking into account safety and the predicted probabilities.
We successfully deploy it on a self-driving vehicle on urban public roads, confirming that it drives safely without compromising comfort.
arXiv Detail & Related papers (2022-11-03T20:16:24Z) - Multi-modal Transformer Path Prediction for Autonomous Vehicle [15.729029675380083]
We propose a path prediction system named Multi-modal Transformer Path Prediction (MTPP) that aims to predict long-term future trajectory of target agents.
To achieve more accurate path prediction, the Transformer architecture is adopted in our model.
An extensive evaluation is conducted to show the efficacy of the proposed system using nuScene, a real-world trajectory forecasting dataset.
arXiv Detail & Related papers (2022-08-15T15:09:26Z) - Federated Deep Learning Meets Autonomous Vehicle Perception: Design and
Verification [168.67190934250868]
Federated learning empowered connected autonomous vehicle (FLCAV) has been proposed.
FLCAV preserves privacy while reducing communication and annotation costs.
It is challenging to determine the network resources and road sensor poses for multi-stage training.
arXiv Detail & Related papers (2022-06-03T23:55:45Z) - SLPC: a VRNN-based approach for stochastic lidar prediction and
completion in autonomous driving [63.87272273293804]
We propose a new LiDAR prediction framework that is based on generative models namely Variational Recurrent Neural Networks (VRNNs)
Our algorithm is able to address the limitations of previous video prediction frameworks when dealing with sparse data by spatially inpainting the depth maps in the upcoming frames.
We present a sparse version of VRNNs and an effective self-supervised training method that does not require any labels.
arXiv Detail & Related papers (2021-02-19T11:56:44Z) - Detecting 32 Pedestrian Attributes for Autonomous Vehicles [103.87351701138554]
In this paper, we address the problem of jointly detecting pedestrians and recognizing 32 pedestrian attributes.
We introduce a Multi-Task Learning (MTL) model relying on a composite field framework, which achieves both goals in an efficient way.
We show competitive detection and attribute recognition results, as well as a more stable MTL training.
arXiv Detail & Related papers (2020-12-04T15:10:12Z) - TPNet: Trajectory Proposal Network for Motion Prediction [81.28716372763128]
Trajectory Proposal Network (TPNet) is a novel two-stage motion prediction framework.
TPNet first generates a candidate set of future trajectories as hypothesis proposals, then makes the final predictions by classifying and refining the proposals.
Experiments on four large-scale trajectory prediction datasets, show that TPNet achieves the state-of-the-art results both quantitatively and qualitatively.
arXiv Detail & Related papers (2020-04-26T00:01:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.