論文の概要: BoT-Drive: Hierarchical Behavior and Trajectory Planning for Autonomous Driving using POMDPs
- arxiv url: http://arxiv.org/abs/2409.18411v1
- Date: Fri, 27 Sep 2024 02:58:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-06 06:31:22.309880
- Title: BoT-Drive: Hierarchical Behavior and Trajectory Planning for Autonomous Driving using POMDPs
- Title(参考訳): BoT-Drive:POMDPを用いた自律運転のための階層的行動と軌道計画
- Authors: Xuanjin Jin, Chendong Zeng, Shengfa Zhu, Chunxiao Liu, Panpan Cai,
- Abstract要約: 本稿では,動作と軌道レベルの不確実性に対処する計画アルゴリズムであるBoT-Driveを紹介する。
ドライバーモデルを自動運転車の意思決定行動として扱うことで、BoT-DriveはPOMDPに固有の指数関数的な複雑さに効果的に取り組むことができる。
実世界のデータによる評価は、BoT-Driveが既存の計画手法と学習ベースの手法の両方を一貫して上回っていることを示している。
- 参考スコア(独自算出の注目度): 8.163065132276373
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Uncertainties in dynamic road environments pose significant challenges for behavior and trajectory planning in autonomous driving. This paper introduces BoT-Drive, a planning algorithm that addresses uncertainties at both behavior and trajectory levels within a Partially Observable Markov Decision Process (POMDP) framework. BoT-Drive employs driver models to characterize unknown behavioral intentions and utilizes their model parameters to infer hidden driving styles. By also treating driver models as decision-making actions for the autonomous vehicle, BoT-Drive effectively tackles the exponential complexity inherent in POMDPs. To enhance safety and robustness, the planner further applies importance sampling to refine the driving trajectory conditioned on the planned high-level behavior. Evaluation on real-world data shows that BoT-Drive consistently outperforms both existing planning methods and learning-based methods in regular and complex urban driving scenes, demonstrating significant improvements in driving safety and reliability.
- Abstract(参考訳): 動的道路環境の不確実性は、自律運転における行動や軌道計画に重大な課題をもたらす。
本稿では,部分観測可能なマルコフ決定プロセス(POMDP)フレームワークにおける動作と軌道レベルの不確実性に対処する計画アルゴリズムであるBoT-Driveを紹介する。
BoT-Driveは、未知の行動意図を特徴付けるためにドライバモデルを使用し、そのモデルパラメータを使用して隠れた運転スタイルを推論する。
ドライバーモデルを自動運転車の意思決定行動として扱うことで、BoT-DriveはPOMDPに固有の指数関数的な複雑さに効果的に取り組むことができる。
安全性と堅牢性を高めるため、プランナーは、さらに重要サンプリングを適用して、計画された高レベルな動作に照らされた駆動軌道を洗練させる。
実世界のデータによる評価によると、BoT-Driveは、通常の都市運転シーンと複雑な都市運転シーンで既存の計画手法と学習ベースの手法の両方を一貫して上回り、運転安全性と信頼性が著しく向上している。
関連論文リスト
- DiFSD: Ego-Centric Fully Sparse Paradigm with Uncertainty Denoising and Iterative Refinement for Efficient End-to-End Self-Driving [55.53171248839489]
我々は、エンドツーエンドの自動運転のためのエゴ中心の完全スパースパラダイムであるDiFSDを提案する。
特に、DiFSDは主にスパース知覚、階層的相互作用、反復的な運動プランナーから構成される。
nuScenesとBench2Driveデータセットで実施された実験は、DiFSDの優れた計画性能と優れた効率を実証している。
論文 参考訳(メタデータ) (2024-09-15T15:55:24Z) - GPT-Augmented Reinforcement Learning with Intelligent Control for Vehicle Dispatching [82.19172267487998]
GARLIC: GPT拡張強化学習のフレームワーク。
本稿では,GPT強化強化学習とインテリジェント制御のフレームワークであるGARLICについて紹介する。
論文 参考訳(メタデータ) (2024-08-19T08:23:38Z) - RACER: Rational Artificial Intelligence Car-following-model Enhanced by
Reality [51.244807332133696]
本稿では,アダプティブ・クルーズ・コントロール(ACC)運転行動を予測する,最先端の深層学習車追従モデルであるRACERを紹介する。
従来のモデルとは異なり、RACERは実走行の重要な要素であるRDC(Rational Driving Constraints)を効果的に統合している。
RACERはアクセラレーション、ベロシティ、スペーシングといった主要なメトリクスを網羅し、ゼロ違反を登録する。
論文 参考訳(メタデータ) (2023-12-12T06:21:30Z) - BAT: Behavior-Aware Human-Like Trajectory Prediction for Autonomous
Driving [24.123577277806135]
我々は行動認識軌道予測モデル(BAT)を考案した。
我々のモデルは行動認識、相互作用認識、優先度認識、位置認識モジュールから構成される。
次世代シミュレーション(NGSIM)、ハイウェイドローン(HighD)、ラウンドアバウンドドローン(RounD)、マカオコネクテッド自律運転(MoCAD)データセットにおけるBATの性能を評価する。
論文 参考訳(メタデータ) (2023-12-11T13:27:51Z) - Driving into the Future: Multiview Visual Forecasting and Planning with
World Model for Autonomous Driving [56.381918362410175]
Drive-WMは、既存のエンド・ツー・エンドの計画モデルと互換性のある世界初のドライビングワールドモデルである。
ドライビングシーンで高忠実度マルチビュー映像を生成する。
論文 参考訳(メタデータ) (2023-11-29T18:59:47Z) - Learning Terrain-Aware Kinodynamic Model for Autonomous Off-Road Rally
Driving With Model Predictive Path Integral Control [4.23755398158039]
本稿では,固有受容情報と外部受容情報の両方に基づいて,地形を考慮したキノダイナミクスモデルを学習する手法を提案する。
提案モデルでは、6自由度運動の信頼性予測が生成され、接触相互作用を推定することもできる。
シミュレーションされたオフロードトラック実験により提案手法の有効性を実証し,提案手法がベースラインより優れていることを示す。
論文 参考訳(メタデータ) (2023-05-01T06:09:49Z) - Prediction Based Decision Making for Autonomous Highway Driving [3.6818636539023175]
本稿では,予測に基づく深層強化学習(Deep Reinforcement Learning, PDRL)意思決定モデルを提案する。
高速道路運転の意思決定プロセスにおいて、周囲の車両の操作意図を考慮に入れている。
その結果,提案したPDRLモデルでは,衝突数を減少させることで,Deep Reinforcement Learning (DRL)モデルと比較して意思決定性能が向上することがわかった。
論文 参考訳(メタデータ) (2022-09-05T19:28:30Z) - Tackling Real-World Autonomous Driving using Deep Reinforcement Learning [63.3756530844707]
本研究では,加速と操舵角度を予測するニューラルネットワークを学習するモデルレスディープ強化学習プランナを提案する。
実際の自動運転車にシステムをデプロイするために、我々は小さなニューラルネットワークで表されるモジュールも開発する。
論文 参考訳(メタデータ) (2022-07-05T16:33:20Z) - Transferable and Adaptable Driving Behavior Prediction [34.606012573285554]
本研究では,運転行動に対して高品質で伝達可能で適応可能な予測を生成する階層型フレームワークであるHATNを提案する。
我々は,交差点における実交通データの軌跡予測と,インターActionデータセットからのラウンドアバウンドのタスクにおいて,我々のアルゴリズムを実証する。
論文 参考訳(メタデータ) (2022-02-10T16:46:24Z) - How To Not Drive: Learning Driving Constraints from Demonstration [0.0]
本研究では,人間の運転軌跡から運動計画制約を学習するための新しい手法を提案する。
行動計画は、交通規則に従うために要求される高いレベルの意思決定に責任を負う。
運動プランナーの役割は、自動運転車が従うための実用的で安全な軌道を作り出すことである。
論文 参考訳(メタデータ) (2021-10-01T20:47:04Z) - Learning to drive from a world on rails [78.28647825246472]
モデルベースアプローチによって,事前記録された運転ログからインタラクティブな視覚ベースの運転方針を学習する。
世界の前方モデルは、あらゆる潜在的な運転経路の結果を予測する運転政策を監督する。
提案手法は,carla リーダボードにまずランク付けし,40 倍少ないデータを用いて25%高い運転スコアを得た。
論文 参考訳(メタデータ) (2021-05-03T05:55:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。