論文の概要: Hi-Drive: Hierarchical POMDP Planning for Safe Autonomous Driving in Diverse Urban Environments
- arxiv url: http://arxiv.org/abs/2409.18411v2
- Date: Wed, 15 Oct 2025 07:52:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-16 20:13:28.237649
- Title: Hi-Drive: Hierarchical POMDP Planning for Safe Autonomous Driving in Diverse Urban Environments
- Title(参考訳): ハイドライブ:多都市環境における安全な自動運転のための階層的PMDP計画
- Authors: Xuanjin Jin, Chendong Zeng, Shengfa Zhu, Chunxiao Liu, Panpan Cai,
- Abstract要約: Hi-Driveは、動作レベルと軌道レベルの不確実性に対処する階層的計画アルゴリズムである。
Hi-Driveはドライバーモデルを使用して、他の車の不確実な行動意図を表現している。
- 参考スコア(独自算出の注目度): 4.76355503514683
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Uncertainties in dynamic road environments pose significant challenges for behavior and trajectory planning in autonomous driving. This paper introduces Hi-Drive, a hierarchical planning algorithm addressing uncertainties at both behavior and trajectory levels using a hierarchical Partially Observable Markov Decision Process (POMDP) formulation. Hi-Drive employs driver models to represent uncertain behavioral intentions of other vehicles and uses their parameters to infer hidden driving styles. By treating driver models as high-level decision-making actions, our approach effectively manages the exponential complexity inherent in POMDPs. To further enhance safety and robustness, Hi-Drive integrates a trajectory optimization based on importance sampling, refining trajectories using a comprehensive analysis of critical agents. Evaluations on real-world urban driving datasets demonstrate that Hi-Drive significantly outperforms state-of-the-art planning-based and learning-based methods across diverse urban driving situations in real-world benchmarks.
- Abstract(参考訳): 動的道路環境の不確実性は、自律運転における行動や軌道計画に重大な課題をもたらす。
本稿では,階層的部分観測可能マルコフ決定過程(POMDP)の定式化を用いて,動作と軌道レベルの不確実性に対処する階層的計画アルゴリズムであるHi-Driveを紹介する。
Hi-Driveはドライバーモデルを用いて、他の車の不確実な行動意図を表現し、そのパラメータを使って隠れた運転スタイルを推測する。
ドライバモデルを高レベルな意思決定行動として扱うことにより,POMDPに固有の指数関数的複雑性を効果的に管理する。
安全性とロバスト性をさらに高めるため、Hi-Driveは重要なエージェントの包括的な分析を用いて、重要サンプリング、修正トラジェクトリに基づくトラジェクトリ最適化を統合する。
実世界の都市運転データセットの評価によると、Hi-Driveは、実世界のベンチマークにおいて、さまざまな都市運転状況において、最先端の計画ベースおよび学習ベースの手法を著しく上回っている。
関連論文リスト
- Minds on the Move: Decoding Trajectory Prediction in Autonomous Driving with Cognitive Insights [18.92479778025183]
運転シナリオでは、車両の軌道は人間の運転者の意思決定プロセスによって決定される。
従来のモデルは人間のドライバーの真の意図を捉えることができず、長期の軌道予測において最適以下の性能をもたらす。
ドライバーの意思決定メカニズムを解釈するために,認知的概念である知覚安全を取り入れた認知情報変換器(CITF)を導入する。
論文 参考訳(メタデータ) (2025-02-27T13:43:17Z) - Diffusion-Based Planning for Autonomous Driving with Flexible Guidance [19.204115959760788]
閉ループ計画のための新しい変圧器ベース拡散プランナを提案する。
本モデルは,予測タスクと計画タスクの協調モデリングを支援する。
様々な運転スタイルで頑健な伝達性を持つ最先端の閉ループ性能を実現する。
論文 参考訳(メタデータ) (2025-01-26T15:49:50Z) - DiFSD: Ego-Centric Fully Sparse Paradigm with Uncertainty Denoising and Iterative Refinement for Efficient End-to-End Self-Driving [55.53171248839489]
我々は、エンドツーエンドの自動運転のためのエゴ中心の完全スパースパラダイムであるDiFSDを提案する。
特に、DiFSDは主にスパース知覚、階層的相互作用、反復的な運動プランナーから構成される。
nuScenesとBench2Driveデータセットで実施された実験は、DiFSDの優れた計画性能と優れた効率を実証している。
論文 参考訳(メタデータ) (2024-09-15T15:55:24Z) - GPT-Augmented Reinforcement Learning with Intelligent Control for Vehicle Dispatching [82.19172267487998]
GARLIC: GPT拡張強化学習のフレームワーク。
本稿では,GPT強化強化学習とインテリジェント制御のフレームワークであるGARLICについて紹介する。
論文 参考訳(メタデータ) (2024-08-19T08:23:38Z) - Planning with Adaptive World Models for Autonomous Driving [50.4439896514353]
マルチエージェントインタラクションをキャプチャする実世界のモーションプランニングベンチマークであるnuPlanを提案する。
我々は、グラフ畳み込みニューラルネットワーク(GCNN)であるBehaviorNetを用いて、このようなユニークな振る舞いをモデル化することを学ぶ。
また、モデル予測制御(MPC)ベースのプランナであるAdaptiveDriverについても紹介する。
論文 参考訳(メタデータ) (2024-06-15T18:53:45Z) - RACER: Rational Artificial Intelligence Car-following-model Enhanced by
Reality [51.244807332133696]
本稿では,アダプティブ・クルーズ・コントロール(ACC)運転行動を予測する,最先端の深層学習車追従モデルであるRACERを紹介する。
従来のモデルとは異なり、RACERは実走行の重要な要素であるRDC(Rational Driving Constraints)を効果的に統合している。
RACERはアクセラレーション、ベロシティ、スペーシングといった主要なメトリクスを網羅し、ゼロ違反を登録する。
論文 参考訳(メタデータ) (2023-12-12T06:21:30Z) - BAT: Behavior-Aware Human-Like Trajectory Prediction for Autonomous
Driving [24.123577277806135]
我々は行動認識軌道予測モデル(BAT)を考案した。
我々のモデルは行動認識、相互作用認識、優先度認識、位置認識モジュールから構成される。
次世代シミュレーション(NGSIM)、ハイウェイドローン(HighD)、ラウンドアバウンドドローン(RounD)、マカオコネクテッド自律運転(MoCAD)データセットにおけるBATの性能を評価する。
論文 参考訳(メタデータ) (2023-12-11T13:27:51Z) - Driving into the Future: Multiview Visual Forecasting and Planning with
World Model for Autonomous Driving [56.381918362410175]
Drive-WMは、既存のエンド・ツー・エンドの計画モデルと互換性のある世界初のドライビングワールドモデルである。
ドライビングシーンで高忠実度マルチビュー映像を生成する。
論文 参考訳(メタデータ) (2023-11-29T18:59:47Z) - Learning Terrain-Aware Kinodynamic Model for Autonomous Off-Road Rally
Driving With Model Predictive Path Integral Control [4.23755398158039]
本稿では,固有受容情報と外部受容情報の両方に基づいて,地形を考慮したキノダイナミクスモデルを学習する手法を提案する。
提案モデルでは、6自由度運動の信頼性予測が生成され、接触相互作用を推定することもできる。
シミュレーションされたオフロードトラック実験により提案手法の有効性を実証し,提案手法がベースラインより優れていることを示す。
論文 参考訳(メタデータ) (2023-05-01T06:09:49Z) - Prediction Based Decision Making for Autonomous Highway Driving [3.6818636539023175]
本稿では,予測に基づく深層強化学習(Deep Reinforcement Learning, PDRL)意思決定モデルを提案する。
高速道路運転の意思決定プロセスにおいて、周囲の車両の操作意図を考慮に入れている。
その結果,提案したPDRLモデルでは,衝突数を減少させることで,Deep Reinforcement Learning (DRL)モデルと比較して意思決定性能が向上することがわかった。
論文 参考訳(メタデータ) (2022-09-05T19:28:30Z) - Tackling Real-World Autonomous Driving using Deep Reinforcement Learning [63.3756530844707]
本研究では,加速と操舵角度を予測するニューラルネットワークを学習するモデルレスディープ強化学習プランナを提案する。
実際の自動運転車にシステムをデプロイするために、我々は小さなニューラルネットワークで表されるモジュールも開発する。
論文 参考訳(メタデータ) (2022-07-05T16:33:20Z) - Transferable and Adaptable Driving Behavior Prediction [34.606012573285554]
本研究では,運転行動に対して高品質で伝達可能で適応可能な予測を生成する階層型フレームワークであるHATNを提案する。
我々は,交差点における実交通データの軌跡予測と,インターActionデータセットからのラウンドアバウンドのタスクにおいて,我々のアルゴリズムを実証する。
論文 参考訳(メタデータ) (2022-02-10T16:46:24Z) - How To Not Drive: Learning Driving Constraints from Demonstration [0.0]
本研究では,人間の運転軌跡から運動計画制約を学習するための新しい手法を提案する。
行動計画は、交通規則に従うために要求される高いレベルの意思決定に責任を負う。
運動プランナーの役割は、自動運転車が従うための実用的で安全な軌道を作り出すことである。
論文 参考訳(メタデータ) (2021-10-01T20:47:04Z) - Learning to drive from a world on rails [78.28647825246472]
モデルベースアプローチによって,事前記録された運転ログからインタラクティブな視覚ベースの運転方針を学習する。
世界の前方モデルは、あらゆる潜在的な運転経路の結果を予測する運転政策を監督する。
提案手法は,carla リーダボードにまずランク付けし,40 倍少ないデータを用いて25%高い運転スコアを得た。
論文 参考訳(メタデータ) (2021-05-03T05:55:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。