Dual Cone Gradient Descent for Training Physics-Informed Neural Networks
- URL: http://arxiv.org/abs/2409.18426v1
- Date: Fri, 27 Sep 2024 03:27:46 GMT
- Title: Dual Cone Gradient Descent for Training Physics-Informed Neural Networks
- Authors: Youngsik Hwang, Dong-Young Lim,
- Abstract summary: Physics-informed dual neural networks (PINNs) have emerged as a prominent approach for solving partial differential equations.
We propose a novel framework, Dual Cone Gradient Descent (DCGD), which adjusts the direction of the updated gradient to ensure it falls within a cone region.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Physics-informed neural networks (PINNs) have emerged as a prominent approach for solving partial differential equations (PDEs) by minimizing a combined loss function that incorporates both boundary loss and PDE residual loss. Despite their remarkable empirical performance in various scientific computing tasks, PINNs often fail to generate reasonable solutions, and such pathological behaviors remain difficult to explain and resolve. In this paper, we identify that PINNs can be adversely trained when gradients of each loss function exhibit a significant imbalance in their magnitudes and present a negative inner product value. To address these issues, we propose a novel optimization framework, Dual Cone Gradient Descent (DCGD), which adjusts the direction of the updated gradient to ensure it falls within a dual cone region. This region is defined as a set of vectors where the inner products with both the gradients of the PDE residual loss and the boundary loss are non-negative. Theoretically, we analyze the convergence properties of DCGD algorithms in a non-convex setting. On a variety of benchmark equations, we demonstrate that DCGD outperforms other optimization algorithms in terms of various evaluation metrics. In particular, DCGD achieves superior predictive accuracy and enhances the stability of training for failure modes of PINNs and complex PDEs, compared to existing optimally tuned models. Moreover, DCGD can be further improved by combining it with popular strategies for PINNs, including learning rate annealing and the Neural Tangent Kernel (NTK).
Related papers
- Convergence of Implicit Gradient Descent for Training Two-Layer Physics-Informed Neural Networks [3.680127959836384]
implicit gradient descent (IGD) outperforms the common gradient descent (GD) in handling certain multi-scale problems.
We show that IGD converges a globally optimal solution at a linear convergence rate.
arXiv Detail & Related papers (2024-07-03T06:10:41Z) - RoPINN: Region Optimized Physics-Informed Neural Networks [66.38369833561039]
Physics-informed neural networks (PINNs) have been widely applied to solve partial differential equations (PDEs)
This paper proposes and theoretically studies a new training paradigm as region optimization.
A practical training algorithm, Region Optimized PINN (RoPINN), is seamlessly derived from this new paradigm.
arXiv Detail & Related papers (2024-05-23T09:45:57Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
Physics-informed neural networks (PINNs) have effectively been demonstrated in solving forward and inverse differential equation problems.
PINNs are trapped in training failures when the target functions to be approximated exhibit high-frequency or multi-scale features.
In this paper, we propose to employ implicit gradient descent (ISGD) method to train PINNs for improving the stability of training process.
arXiv Detail & Related papers (2023-03-03T08:17:47Z) - Learning Discretized Neural Networks under Ricci Flow [51.36292559262042]
We study Discretized Neural Networks (DNNs) composed of low-precision weights and activations.
DNNs suffer from either infinite or zero gradients due to the non-differentiable discrete function during training.
arXiv Detail & Related papers (2023-02-07T10:51:53Z) - Learning Physics-Informed Neural Networks without Stacked
Back-propagation [82.26566759276105]
We develop a novel approach that can significantly accelerate the training of Physics-Informed Neural Networks.
In particular, we parameterize the PDE solution by the Gaussian smoothed model and show that, derived from Stein's Identity, the second-order derivatives can be efficiently calculated without back-propagation.
Experimental results show that our proposed method can achieve competitive error compared to standard PINN training but is two orders of magnitude faster.
arXiv Detail & Related papers (2022-02-18T18:07:54Z) - CAN-PINN: A Fast Physics-Informed Neural Network Based on
Coupled-Automatic-Numerical Differentiation Method [17.04611875126544]
Novel physics-informed neural network (PINN) methods for coupling neighboring support points and automatic differentiation (AD) through Taylor series expansion are proposed.
The proposed coupled-automatic-numerical differentiation framework, labeled as can-PINN, unifies the advantages of AD and ND, providing more robust and efficient training than AD-based PINNs.
arXiv Detail & Related papers (2021-10-29T14:52:46Z) - Multi-Objective Loss Balancing for Physics-Informed Deep Learning [0.0]
We observe the role of correctly weighting the combination of multiple competitive loss functions for training PINNs effectively.
We propose a novel self-adaptive loss balancing of PINNs called ReLoBRaLo.
Our simulation studies show that ReLoBRaLo training is much faster and achieves higher accuracy than training PINNs with other balancing methods.
arXiv Detail & Related papers (2021-10-19T09:00:12Z) - Cogradient Descent for Dependable Learning [64.02052988844301]
We propose a dependable learning based on Cogradient Descent (CoGD) algorithm to address the bilinear optimization problem.
CoGD is introduced to solve bilinear problems when one variable is with sparsity constraint.
It can also be used to decompose the association of features and weights, which further generalizes our method to better train convolutional neural networks (CNNs)
arXiv Detail & Related papers (2021-06-20T04:28:20Z) - Efficient training of physics-informed neural networks via importance
sampling [2.9005223064604078]
Physics-In Neural Networks (PINNs) are a class of deep neural networks that are trained to compute systems governed by partial differential equations (PDEs)
We show that an importance sampling approach will improve the convergence behavior of PINNs training.
arXiv Detail & Related papers (2021-04-26T02:45:10Z) - dNNsolve: an efficient NN-based PDE solver [62.997667081978825]
We introduce dNNsolve, that makes use of dual Neural Networks to solve ODEs/PDEs.
We show that dNNsolve is capable of solving a broad range of ODEs/PDEs in 1, 2 and 3 spacetime dimensions.
arXiv Detail & Related papers (2021-03-15T19:14:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.