Semiclassical Truncated-Wigner-Approximation Theory of Molecular Exciton-Polariton Dynamics in Optical Cavities
- URL: http://arxiv.org/abs/2409.18460v1
- Date: Fri, 27 Sep 2024 05:48:37 GMT
- Title: Semiclassical Truncated-Wigner-Approximation Theory of Molecular Exciton-Polariton Dynamics in Optical Cavities
- Authors: Nguyen Thanh Phuc,
- Abstract summary: Molecular exciton polaritons are hybrid states resulting from the strong coupling of molecular electronic excitations with an optical cavity mode.
We develop a semiclassical theory for molecular exciton-polariton dynamics using the Wigner approximation.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Molecular exciton polaritons are hybrid states resulting from the strong coupling of molecular electronic excitations with an optical cavity mode, presenting a promising approach for controlling photophysical and photochemical properties in molecular systems. In this study, we develop a semiclassical theory for molecular exciton-polariton dynamics using the truncated Wigner approximation (TWA) to explore the collective behavior of molecular electronic excited states under strong light-matter coupling. Our approach expands the previously developed TWA theory for molecular vibration-polariton dynamics (J. Chem. Theory Comput. 2024, 20, 3019--3027) by incorporating semiclassical treatment of quantum coherence between ground and excited molecular states. We initially apply the TWA theory to a simplified system of molecules modeled as two-level (spin-1/2) systems, omitting vibronic coupling. The semiclassical results derived from applying the TWA to single-spin operators demonstrate excellent agreement with full quantum dynamic simulations in systems with a sufficiently large number of molecules. Lastly, the TWA theory is extended to incorporate molecular vibronic coupling, revealing the dynamic polaron decoupling effect, where quantum coherence between molecular excitations is preserved under strong light-matter coupling.
Related papers
- Extending the Tavis-Cummings model for molecular ensembles -- Exploring the effects of dipole self energies and static dipole moments [0.0]
We extend the Tavis-Cummings model for molecular ensembles.
We simulate excited-state dynamics and spectroscopy of MgH$+$ molecules resonantly coupled to an optical cavity.
arXiv Detail & Related papers (2024-04-16T15:58:40Z) - Quench dynamics in higher-dimensional Holstein models: Insights from Truncated Wigner Approaches [41.94295877935867]
We study the melting of charge-density waves in a Holstein model after a sudden switch-on of the electronic hopping.
A comparison with exact data obtained for a Holstein chain shows that a semiclassical treatment of both the electrons and phonons is required in order to correctly describe the phononic dynamics.
arXiv Detail & Related papers (2023-12-19T16:14:01Z) - Semiclassical truncated-Wigner-approximation theory of
molecular-vibration-polariton dynamics in optical cavities [0.0]
We develop here the semiclassical theory of molecular-vibration-polariton dynamics based on the truncated Wigner approximation (TWA)
The validity of TWA is examined by comparing it with the fully quantum dynamics of a single-molecule system.
The collective and resonance effects of molecular-vibration-polariton formation on the nuclear dynamics are observed in a system of many molecules.
arXiv Detail & Related papers (2023-11-14T01:06:22Z) - Quantum control of ro-vibrational dynamics and application to
light-induced molecular chirality [39.58317527488534]
Achiral molecules can be made temporarily chiral by excitation with electric fields.
We go beyond the assumption of molecular orientations to remain fixed during the excitation process.
arXiv Detail & Related papers (2023-10-17T20:33:25Z) - Ab-Initio Vibro-Polaritonic Spectra in Strongly Coupled Cavity-Molecule
Systems [0.0]
We present an ab-initio methodology, based on the cavity Born-Oppenheimer Hartree-Fock ansatz, to calculate vibro-polaritonic IR spectra.
Our semi-classical approach, validated against full quantum simulations, reproduces key features of the vibro-polaritonic spectra.
arXiv Detail & Related papers (2023-10-03T08:16:21Z) - Cavity-Catalyzed Hydrogen Transfer Dynamics in an Entangled Molecular
Ensemble under Vibrational Strong Coupling [0.0]
We numerically solve the Schr"odinger equation to study the cavity-induced quantum dynamics in an ensemble of molecules.
We show that the cavity indeed enforces hydrogen transfer from an enol to an enethiol configuration with transfer rates significantly increasing with light-matter interaction strength.
A non-trivial dependence of the dynamics on ensemble size is found, clearly beyond scaled single-molecule models.
arXiv Detail & Related papers (2023-01-10T16:58:57Z) - Quantum Coherent Control of a Single Molecular-Polariton Rotation [2.2482144023488346]
We present a combined analytical and numerical study for coherent terahertz control of a single molecular polariton.
The presence of a cavity strongly modifies the post-pulse orientation of the polariton, making it difficult to obtain its maximal degree of orientation.
This work offers a new strategy to study rotational dynamics in the strong-coupling regime and provides a method for complete quantum coherent control of a single molecular polariton.
arXiv Detail & Related papers (2022-12-22T12:37:55Z) - Relativistic aspects of orbital and magnetic anisotropies in the
chemical bonding and structure of lanthanide molecules [60.17174832243075]
We study the electronic and ro-vibrational states of heavy homonuclear lanthanide Er2 and Tm2 molecules by applying state-of-the-art relativistic methods.
We were able to obtain reliable spin-orbit and correlation-induced splittings between the 91 Er2 and 36 Tm2 electronic potentials dissociating to two ground-state atoms.
arXiv Detail & Related papers (2021-07-06T15:34:00Z) - Molecular Interactions Induced by a Static Electric Field in Quantum
Mechanics and Quantum Electrodynamics [68.98428372162448]
We study the interaction between two neutral atoms or molecules subject to a uniform static electric field.
Our focus is to understand the interplay between leading contributions to field-induced electrostatics/polarization and dispersion interactions.
arXiv Detail & Related papers (2021-03-30T14:45:30Z) - Controlled coherent dynamics of [VO(TPP)], a prototype molecular nuclear
qudit with an electronic ancilla [50.002949299918136]
We show that [VO(TPP)] (vanadyl tetraphenylporphyrinate) is a promising system suitable to implement quantum computation algorithms.
It embeds an electronic spin 1/2 coupled through hyperfine interaction to a nuclear spin 7/2, both characterized by remarkable coherence.
arXiv Detail & Related papers (2021-03-15T21:38:41Z) - Dynamical Strengthening of Covalent and Non-Covalent Molecular
Interactions by Nuclear Quantum Effects at Finite Temperature [58.999762016297865]
Nuclear quantum effects (NQE) tend to generate delocalized molecular dynamics.
NQE often enhance electronic interactions and, in turn, can result in dynamical molecular stabilization at finite temperature.
Our findings yield new insights into the versatile role of nuclear quantum fluctuations in molecules and materials.
arXiv Detail & Related papers (2020-06-18T14:30:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.