論文の概要: Med-IC: Fusing a Single Layer Involution with Convolutions for Enhanced Medical Image Classification and Segmentation
- arxiv url: http://arxiv.org/abs/2409.18506v1
- Date: Fri, 27 Sep 2024 07:44:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-06 05:52:22.677562
- Title: Med-IC: Fusing a Single Layer Involution with Convolutions for Enhanced Medical Image Classification and Segmentation
- Title(参考訳): Med-IC: 医用画像分類とセグメンテーションのための畳み込みによる単一層インボリューション
- Authors: Md. Farhadul Islam, Sarah Zabeen, Meem Arafat Manab, Mohammad Rakibul Hasan Mahin, Joyanta Jyoti Mondal, Md. Tanzim Reza, Md Zahidul Hasan, Munima Haque, Farig Sadeque, Jannatun Noor,
- Abstract要約: 本研究では,畳み込みニューラルネットワーク(CNN)アーキテクチャに先立って,単一の畳み込み層を適用することで,分類性能とセグメンテーション性能を大幅に向上させる方法について検討する。
さらに、この研究は、インボリューションレイヤーの過剰使用が、特定のタイプの医療画像において不正確な予測をもたらす可能性を示唆している。
- 参考スコア(独自算出の注目度): 1.0962291525779901
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The majority of medical images, especially those that resemble cells, have similar characteristics. These images, which occur in a variety of shapes, often show abnormalities in the organ or cell region. The convolution operation possesses a restricted capability to extract visual patterns across several spatial regions of an image. The involution process, which is the inverse operation of convolution, complements this inherent lack of spatial information extraction present in convolutions. In this study, we investigate how applying a single layer of involution prior to a convolutional neural network (CNN) architecture can significantly improve classification and segmentation performance, with a comparatively negligible amount of weight parameters. The study additionally shows how excessive use of involution layers might result in inaccurate predictions in a particular type of medical image. According to our findings from experiments, the strategy of adding only a single involution layer before a CNN-based model outperforms most of the previous works.
- Abstract(参考訳): 大部分の医療画像、特に細胞に似た画像は、同様の特徴を持つ。
これらの画像は様々な形で発生し、しばしば臓器や細胞領域の異常を示す。
畳み込み操作は、画像の複数の空間領域にわたる視覚パターンを抽出する制限された能力を有する。
畳み込みの逆操作である畳み込み過程は、畳み込みに存在する空間情報の抽出の欠如を補完する。
本研究では、畳み込みニューラルネットワーク(CNN)アーキテクチャに先立って、単一の畳み込み層を適用して、比較的無視可能な量の重みパラメータを用いて、分類とセグメンテーション性能を著しく向上させる方法について検討する。
さらに、この研究は、インボリューションレイヤーの過剰使用が、特定のタイプの医療画像において不正確な予測をもたらす可能性を示唆している。
実験の結果によると、CNNベースのモデルに1つのインボリューション層を追加するという戦略は、これまでの作業よりも優れていた。
関連論文リスト
- Disease Classification and Impact of Pretrained Deep Convolution Neural Networks on Diverse Medical Imaging Datasets across Imaging Modalities [0.0]
本稿では,種々の医用画像データセット間での伝達学習を伴う,事前訓練された深部畳み込みニューラルネットワークの使用の複雑さについて検討する。
固定特徴抽出器として事前訓練されたモデルを使用することで,データセットに関係なく性能が低下することを示す。
また、より深く複雑なアーキテクチャが必ずしも最高のパフォーマンスをもたらすとは限らないことも判明した。
論文 参考訳(メタデータ) (2024-08-30T04:51:19Z) - Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images [68.42215385041114]
本稿では,CLIPモデルを用いた医用異常検出のための軽量な多レベル適応と比較フレームワークを提案する。
提案手法では,複数の残像アダプタを事前学習した視覚エンコーダに統合し,視覚的特徴の段階的向上を実現する。
医学的異常検出ベンチマーク実験により,本手法が現在の最先端モデルを大幅に上回っていることが示された。
論文 参考訳(メタデータ) (2024-03-19T09:28:19Z) - Affine-Consistent Transformer for Multi-Class Cell Nuclei Detection [76.11864242047074]
本稿では, 原子核位置を直接生成する新しいアフィン一貫性変換器 (AC-Former) を提案する。
本稿では,AAT (Adaptive Affine Transformer) モジュールを導入し,ローカルネットワークトレーニングのためのオリジナル画像をワープするための重要な空間変換を自動学習する。
実験結果から,提案手法は様々なベンチマークにおいて既存の最先端アルゴリズムを著しく上回ることがわかった。
論文 参考訳(メタデータ) (2023-10-22T02:27:02Z) - Multilayer Multiset Neuronal Networks -- MMNNs [55.2480439325792]
本研究は,2層以上の類似性ニューロンを組み込んだ多層神経回路網について述べる。
また,回避すべき画像領域に割り当てられる反プロトタイプ点の利用についても検討した。
論文 参考訳(メタデータ) (2023-08-28T12:55:13Z) - VesselMorph: Domain-Generalized Retinal Vessel Segmentation via
Shape-Aware Representation [12.194439938007672]
ドメインシフトは医療画像の本質的な特性であり、学習ベースのアルゴリズムを大規模に展開する上で大きな障害となっている。
形状認識表現を合成することにより2次元網膜血管セグメンテーションタスクを一般化するVesselMorphという手法を提案する。
VesselMorphは、異なるドメインシフトシナリオの競合するメソッドと比較して、優れた一般化性能を実現する。
論文 参考訳(メタデータ) (2023-07-01T06:02:22Z) - Realistic Data Enrichment for Robust Image Segmentation in
Histopathology [2.248423960136122]
拡散モデルに基づく新しい手法を提案し、不均衡なデータセットを、表現不足なグループから有意な例で拡張する。
本手法は,限定的な臨床データセットを拡張して,機械学習パイプラインのトレーニングに適したものにする。
論文 参考訳(メタデータ) (2023-04-19T09:52:50Z) - Performance of GAN-based augmentation for deep learning COVID-19 image
classification [57.1795052451257]
ディープラーニングを医療分野に適用する上で最大の課題は、トレーニングデータの提供である。
データ拡張は、限られたデータセットに直面した時に機械学習で使用される典型的な方法論である。
本研究は, 新型コロナウイルスの胸部X線画像セットを限定して, StyleGAN2-ADAモデルを用いて訓練するものである。
論文 参考訳(メタデータ) (2023-04-18T15:39:58Z) - Revisiting Hidden Representations in Transfer Learning for Medical
Imaging [2.4545492329339815]
7つの医学分類課題について,ImageNetとRadImageNetを比較した。
その結果,ImageNetとRadImageNetは直感とは対照的に,異なる中間表現に収束する可能性が示唆された。
その結果, ネットワーク間の微調整前後の類似性は, 性能向上と相関しないことがわかった。
論文 参考訳(メタデータ) (2023-02-16T13:04:59Z) - Automatic Semantic Segmentation of the Lumbar Spine. Clinical
Applicability in a Multi-parametric and Multi-centre MRI study [0.0]
この文書は、最も正確なセグメンテーションを得たニューラルネットワークの設計結果について記述し、分析する。
提案するいくつかの設計は、ベースラインとして使用される標準のU-Netよりも優れており、特に複数のニューラルネットワークの出力が異なる戦略に従って結合されるアンサンブルで使用される場合である。
論文 参考訳(メタデータ) (2021-11-16T17:33:05Z) - Comparisons among different stochastic selection of activation layers
for convolutional neural networks for healthcare [77.99636165307996]
ニューラルネットワークのアンサンブルを用いて生体医用画像の分類を行う。
ReLU, leaky ReLU, Parametric ReLU, ELU, Adaptive Piecewice Linear Unit, S-Shaped ReLU, Swish, Mish, Mexican Linear Unit, Parametric Deformable Linear Unit, Soft Root Sign。
論文 参考訳(メタデータ) (2020-11-24T01:53:39Z) - Domain Generalization for Medical Imaging Classification with
Linear-Dependency Regularization [59.5104563755095]
本稿では,医用画像分類分野におけるディープニューラルネットワークの一般化能力向上のための,シンプルだが効果的なアプローチを提案する。
医用画像の領域変数がある程度コンパクトであることに感銘を受けて,変分符号化による代表的特徴空間の学習を提案する。
論文 参考訳(メタデータ) (2020-09-27T12:30:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。