論文の概要: Wasserstein Distance-Weighted Adversarial Network for Cross-Domain Credit Risk Assessment
- arxiv url: http://arxiv.org/abs/2409.18544v1
- Date: Fri, 27 Sep 2024 08:25:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-01 21:55:30.193649
- Title: Wasserstein Distance-Weighted Adversarial Network for Cross-Domain Credit Risk Assessment
- Title(参考訳): Wasserstein Distance-Weighted Adversarial Network for Cross-Domain Credit Risk Assessment
- Authors: Mohan Jiang, Jiating Lin, Hongju Ouyang, Jingming Pan, Siyuan Han, Bingyao Liu,
- Abstract要約: 本稿では、改良されたADAフレームワーク、Wasserstein Distance Weighted Adrial Domain Adaptation Network (WD-WADA)を紹介する。
提案手法はデータ不均衡に対処する革新的な重み付け戦略を含む。
本稿は,WD-WADAがコールドスタート問題を緩和するだけでなく,より正確なドメイン差の測定も提供することを示す。
- 参考スコア(独自算出の注目度): 0.37384109981836144
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper delves into the application of adversarial domain adaptation (ADA) for enhancing credit risk assessment in financial institutions. It addresses two critical challenges: the cold start problem, where historical lending data is scarce, and the data imbalance issue, where high-risk transactions are underrepresented. The paper introduces an improved ADA framework, the Wasserstein Distance Weighted Adversarial Domain Adaptation Network (WD-WADA), which leverages the Wasserstein distance to align source and target domains effectively. The proposed method includes an innovative weighted strategy to tackle data imbalance, adjusting for both the class distribution and the difficulty level of predictions. The paper demonstrates that WD-WADA not only mitigates the cold start problem but also provides a more accurate measure of domain differences, leading to improved cross-domain credit risk assessment. Extensive experiments on real-world credit datasets validate the model's effectiveness, showcasing superior performance in cross-domain learning, classification accuracy, and model stability compared to traditional methods.
- Abstract(参考訳): 本稿では、金融機関の信用リスク評価を強化するために、敵対的ドメイン適応(ADA)の適用について検討する。
コールドスタート問題、過去のローンデータが不足している問題、リスクの高いトランザクションが不足しているデータ不均衡問題という2つの重要な課題に対処する。
本稿では、WD-WADA(Wasserstein Distance Weighted Adversarial Domain Adaptation Network)を改良し、WD-WADA(Wasserstein Distance Weighted Adversarial Domain Adaptation Network)を提案する。
提案手法は,データ不均衡に対処する革新的な重み付け戦略を含み,クラス分布と予測の難易度の両方に適応する。
本稿は,WD-WADAがコールドスタート問題を緩和するだけでなく,ドメイン間リスク評価の改善につながることを実証する。
実世界の信用データセットに関する大規模な実験は、従来の手法と比較して、クロスドメイン学習、分類精度、モデルの安定性において優れたパフォーマンスを示す。
関連論文リスト
- DRIVE: Dual-Robustness via Information Variability and Entropic Consistency in Source-Free Unsupervised Domain Adaptation [10.127634263641877]
ラベル付きデータなしで機械学習モデルを新しいドメインに適応させることは、医療画像、自律運転、リモートセンシングといったアプリケーションにおいて重要な課題である。
Source-Free Unsupervised Domain Adaptation (SFUDA)と呼ばれるこのタスクでは、未ラベルのターゲットデータのみを使用して、トレーニング済みのモデルをターゲットドメインに適応させる。
既存のSFUDAメソッドは、しばしば単一モデルアーキテクチャに依存し、ターゲットドメインにおける不確実性と可変性に悩まされる。
本稿では、2重モデルアーキテクチャを利用した新しいSFUDAフレームワークDRIVEを提案する。
論文 参考訳(メタデータ) (2024-11-24T20:35:04Z) - Trust And Balance: Few Trusted Samples Pseudo-Labeling and Temperature Scaled Loss for Effective Source-Free Unsupervised Domain Adaptation [16.5799094981322]
Few Trusted Samples Pseudo-labeling (FTSP) and Temperature Scaled Adaptive Loss (TSAL)を紹介する。
FTSPは、ターゲットデータからの信頼されたサンプルの限られたサブセットを使用して、ドメイン全体の擬似ラベルを推論する分類器を構築する。
TSALは、ユニークな双対温度スケジューリング、漸近的なバランスの多様性、識別性、擬似ラベルの組み込みで設計されている。
論文 参考訳(メタデータ) (2024-09-01T15:09:14Z) - Cal-SFDA: Source-Free Domain-adaptive Semantic Segmentation with
Differentiable Expected Calibration Error [50.86671887712424]
ドメイン適応型セマンティックセグメンテーションの流行は、ソースドメインデータの漏洩に関する懸念を引き起こしている。
ソースデータの要求を回避するため、ソースフリーなドメイン適応が実現可能なソリューションとして登場した。
校正誘導型ソースフリーなドメイン適応型セマンティックセマンティックセマンティクスフレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-06T03:28:34Z) - Learning Unbiased Transferability for Domain Adaptation by Uncertainty
Modeling [107.24387363079629]
ドメイン適応は、ラベル付けされたソースドメインからラベル付けされていない、あるいはラベル付けされていないが関連するターゲットドメインに知識を転送することを目的としています。
ソース内のアノテートされたデータの量とターゲットドメインとの間の不均衡のため、ターゲットの分布のみがソースドメインにアライメントされる。
本稿では,非暴力的非暴力的移動可能性推定プラグイン(UTEP)を提案し,非暴力的移動を最適化するDA法において,識別器の不確実性をモデル化する。
論文 参考訳(メタデータ) (2022-06-02T21:58:54Z) - Learning Invariant Representation with Consistency and Diversity for
Semi-supervised Source Hypothesis Transfer [46.68586555288172]
本稿では,SSHT(Semi-supervised Source hypothesis Transfer)という新たなタスクを提案する。
本研究では、ランダムに拡張された2つの未ラベルデータ間の予測整合性を容易にし、SSHTの簡易かつ効果的なフレームワークである一貫性と多様性の学習(CDL)を提案する。
実験の結果,本手法は,DomainNet,Office-Home,Office-31データセット上で,既存のSSDA手法や教師なしモデル適応手法よりも優れていた。
論文 参考訳(メタデータ) (2021-07-07T04:14:24Z) - Post-Contextual-Bandit Inference [57.88785630755165]
コンテキストバンディットアルゴリズムは、電子商取引、医療、政策立案における非適応的なA/Bテストを置き換える傾向にある。
研究参加者の成果を改善することもでき、良い方針や最良の政策を特定できる可能性を高めることもできる。
研究の終盤における新規介入の信頼性推論を支援するため, 平均治療効果, サブグループ効果, あるいは新政策の価値について, 有効な信頼区間を構築したい。
論文 参考訳(メタデータ) (2021-06-01T12:01:51Z) - Robustified Domain Adaptation [13.14535125302501]
非教師付きドメイン適応(Unsupervised domain adapt, UDA)は、ラベル付きソースドメインからラベル付きターゲットドメインへの知識伝達に広く使用される。
UDAにおける避けられないドメイン分布の偏りは、ターゲットドメインの堅牢性をモデル化するための重要な障壁である。
頑健な UDA モデルをトレーニングするための新しいクラス一貫性のないunsupervised Domain Adaptation (CURDA) フレームワークを提案する。
論文 参考訳(メタデータ) (2020-11-18T22:21:54Z) - Towards Fair Knowledge Transfer for Imbalanced Domain Adaptation [61.317911756566126]
本研究では,不均衡なドメイン間学習における公平性問題に対処するTowards Fair Knowledge Transferフレームワークを提案する。
具体的には、新規なクロスドメインミックスアップ生成を利用して、ターゲット情報でマイノリティソースセットを増強し、公正性を高める。
本モデルでは,2つのベンチマークで全体の精度を20%以上向上させる。
論文 参考訳(メタデータ) (2020-10-23T06:29:09Z) - Decomposed Adversarial Learned Inference [118.27187231452852]
我々は,DALI(Decomposed Adversarial Learned Inference)という新しいアプローチを提案する。
DALIは、データ空間とコード空間の両方の事前および条件分布を明示的に一致させる。
MNIST, CIFAR-10, CelebAデータセットにおけるDALIの有効性を検証する。
論文 参考訳(メタデータ) (2020-04-21T20:00:35Z) - Uncertainty-Aware Consistency Regularization for Cross-Domain Semantic
Segmentation [63.75774438196315]
Unsupervised Domain adapt (UDA) は、未ラベルのデータのみを持つ新しいターゲットドメインにソースドメインの既存のモデルを適用することを目的としている。
既存のほとんどの手法は、エラーを起こしやすい識別器ネットワークまたは不合理な教師モデルから生じる顕著な負の伝達に悩まされている。
ドメイン間セマンティックセグメンテーションのための不確実性を考慮した整合性正規化手法を提案する。
論文 参考訳(メタデータ) (2020-04-19T15:30:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。