Climate Adaptation with Reinforcement Learning: Experiments with Flooding and Transportation in Copenhagen
- URL: http://arxiv.org/abs/2409.18574v1
- Date: Fri, 27 Sep 2024 09:18:57 GMT
- Title: Climate Adaptation with Reinforcement Learning: Experiments with Flooding and Transportation in Copenhagen
- Authors: Miguel Costa, Morten W. Petersen, Arthur Vandervoort, Martin Drews, Karyn Morrissey, Francisco C. Pereira,
- Abstract summary: Extreme rainfall events contribute to urban flooding.
Floods can damage transport infrastructure and disrupt mobility.
Reinforcement learning serves as a powerful tool for uncovering optimal adaptation strategies.
- Score: 3.4447242282168777
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Due to climate change the frequency and intensity of extreme rainfall events, which contribute to urban flooding, are expected to increase in many places. These floods can damage transport infrastructure and disrupt mobility, highlighting the need for cities to adapt to escalating risks. Reinforcement learning (RL) serves as a powerful tool for uncovering optimal adaptation strategies, determining how and where to deploy adaptation measures effectively, even under significant uncertainty. In this study, we leverage RL to identify the most effective timing and locations for implementing measures, aiming to reduce both direct and indirect impacts of flooding. Our framework integrates climate change projections of future rainfall events and floods, models city-wide motorized trips, and quantifies direct and indirect impacts on infrastructure and mobility. Preliminary results suggest that our RL-based approach can significantly enhance decision-making by prioritizing interventions in specific urban areas and identifying the optimal periods for their implementation.
Related papers
- Efficient Localized Adaptation of Neural Weather Forecasting: A Case Study in the MENA Region [62.09891513612252]
We focus on limited-area modeling and train our model specifically for localized region-level downstream tasks.
We consider the MENA region due to its unique climatic challenges, where accurate localized weather forecasting is crucial for managing water resources, agriculture and mitigating the impacts of extreme weather events.
Our study aims to validate the effectiveness of integrating parameter-efficient fine-tuning (PEFT) methodologies, specifically Low-Rank Adaptation (LoRA) and its variants, to enhance forecast accuracy, as well as training speed, computational resource utilization, and memory efficiency in weather and climate modeling for specific regions.
arXiv Detail & Related papers (2024-09-11T19:31:56Z) - The Power of Explainability in Forecast-Informed Deep Learning Models
for Flood Mitigation [0.0]
We propose FIDLAR, a Forecast Informed Deep Learning Architecture, to achieve flood management in watersheds with hydraulic structures.
Results show FIDLAR performs better than the current state-of-the-art with several orders of magnitude speedup.
The main contribution of this paper is the effective use of tools for model explainability, allowing us to understand the contribution of the various environmental factors towards its decisions.
arXiv Detail & Related papers (2023-10-29T21:56:22Z) - Climate-sensitive Urban Planning through Optimization of Tree Placements [55.11389516857789]
Climate change is increasing the intensity and frequency of many extreme weather events, including heatwaves.
Among the most promising strategies is harnessing the benefits of urban trees in shading and cooling pedestrian-level environments.
Physical simulations can estimate the radiative and thermal impact of trees on human thermal comfort but induce high computational costs.
We employ neural networks to simulate the point-wise mean radiant temperatures--a driving factor of outdoor human thermal comfort--across various time scales.
arXiv Detail & Related papers (2023-10-09T13:07:23Z) - Large Scale Masked Autoencoding for Reducing Label Requirements on SAR Data [5.235143203977019]
We apply a self-supervised pretraining scheme, masked autoencoding, to SAR amplitude data covering 8.7% of the Earth's land surface area.
We show that the use of this pretraining scheme reduces labelling requirements for the downstream tasks by more than an order of magnitude.
Our findings significantly advance climate change mitigation by facilitating the development of task and region-specific SAR models.
arXiv Detail & Related papers (2023-10-02T00:11:47Z) - Fully Convolutional Networks for Dense Water Flow Intensity Prediction
in Swedish Catchment Areas [7.324969824727792]
We propose a machine learning-based approach for predicting water flow intensities in inland watercourses.
We are the first to tackle the task of dense water flow intensity prediction.
arXiv Detail & Related papers (2023-04-04T09:28:36Z) - Improving extreme weather events detection with light-weight neural
networks [0.0]
We modify a light-weight Context Guided convolutional neural network architecture trained for semantic segmentation of tropical cyclones and atmospheric rivers in climate data.
Our primary focus is on tropical cyclones, the most destructive weather events, for which current models show limited performance.
arXiv Detail & Related papers (2023-03-31T23:38:54Z) - Benchmarking Safe Deep Reinforcement Learning in Aquatic Navigation [78.17108227614928]
We propose a benchmark environment for Safe Reinforcement Learning focusing on aquatic navigation.
We consider a value-based and policy-gradient Deep Reinforcement Learning (DRL)
We also propose a verification strategy that checks the behavior of the trained models over a set of desired properties.
arXiv Detail & Related papers (2021-12-16T16:53:56Z) - ClimateGAN: Raising Climate Change Awareness by Generating Images of
Floods [89.61670857155173]
We present our solution to simulate photo-realistic floods on authentic images.
We propose ClimateGAN, a model that leverages both simulated and real data for unsupervised domain adaptation and conditional image generation.
arXiv Detail & Related papers (2021-10-06T15:54:57Z) - Physics-informed GANs for Coastal Flood Visualization [65.54626149826066]
We create a deep learning pipeline that generates visual satellite images of current and future coastal flooding.
By evaluating the imagery relative to physics-based flood maps, we find that our proposed framework outperforms baseline models in both physical-consistency and photorealism.
While this work focused on the visualization of coastal floods, we envision the creation of a global visualization of how climate change will shape our earth.
arXiv Detail & Related papers (2020-10-16T02:15:34Z) - Adaptive Reinforcement Learning Model for Simulation of Urban Mobility
during Crises [2.5876546798940616]
This study proposes and tests an adaptive reinforcement learning model that can learn the patterns of human mobility in a normal context.
The application of the proposed model is shown in the context of Houston and the flooding scenario caused by Hurricane Harvey in August 2017.
arXiv Detail & Related papers (2020-09-02T21:47:18Z) - Cautious Adaptation For Reinforcement Learning in Safety-Critical
Settings [129.80279257258098]
Reinforcement learning (RL) in real-world safety-critical target settings like urban driving is hazardous.
We propose a "safety-critical adaptation" task setting: an agent first trains in non-safety-critical "source" environments.
We propose a solution approach, CARL, that builds on the intuition that prior experience in diverse environments equips an agent to estimate risk.
arXiv Detail & Related papers (2020-08-15T01:40:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.