Large Scale Masked Autoencoding for Reducing Label Requirements on SAR Data
- URL: http://arxiv.org/abs/2310.00826v4
- Date: Mon, 30 Sep 2024 14:34:28 GMT
- Title: Large Scale Masked Autoencoding for Reducing Label Requirements on SAR Data
- Authors: Matt Allen, Francisco Dorr, Joseph A. Gallego-Mejia, Laura Martínez-Ferrer, Anna Jungbluth, Freddie Kalaitzis, Raúl Ramos-Pollán,
- Abstract summary: We apply a self-supervised pretraining scheme, masked autoencoding, to SAR amplitude data covering 8.7% of the Earth's land surface area.
We show that the use of this pretraining scheme reduces labelling requirements for the downstream tasks by more than an order of magnitude.
Our findings significantly advance climate change mitigation by facilitating the development of task and region-specific SAR models.
- Score: 5.235143203977019
- License:
- Abstract: Satellite-based remote sensing is instrumental in the monitoring and mitigation of the effects of anthropogenic climate change. Large scale, high resolution data derived from these sensors can be used to inform intervention and policy decision making, but the timeliness and accuracy of these interventions is limited by use of optical data, which cannot operate at night and is affected by adverse weather conditions. Synthetic Aperture Radar (SAR) offers a robust alternative to optical data, but its associated complexities limit the scope of labelled data generation for traditional deep learning. In this work, we apply a self-supervised pretraining scheme, masked autoencoding, to SAR amplitude data covering 8.7\% of the Earth's land surface area, and tune the pretrained weights on two downstream tasks crucial to monitoring climate change - vegetation cover prediction and land cover classification. We show that the use of this pretraining scheme reduces labelling requirements for the downstream tasks by more than an order of magnitude, and that this pretraining generalises geographically, with the performance gain increasing when tuned downstream on regions outside the pretraining set. Our findings significantly advance climate change mitigation by facilitating the development of task and region-specific SAR models, allowing local communities and organizations to deploy tailored solutions for rapid, accurate monitoring of climate change effects.
Related papers
- Efficient Localized Adaptation of Neural Weather Forecasting: A Case Study in the MENA Region [62.09891513612252]
We focus on limited-area modeling and train our model specifically for localized region-level downstream tasks.
We consider the MENA region due to its unique climatic challenges, where accurate localized weather forecasting is crucial for managing water resources, agriculture and mitigating the impacts of extreme weather events.
Our study aims to validate the effectiveness of integrating parameter-efficient fine-tuning (PEFT) methodologies, specifically Low-Rank Adaptation (LoRA) and its variants, to enhance forecast accuracy, as well as training speed, computational resource utilization, and memory efficiency in weather and climate modeling for specific regions.
arXiv Detail & Related papers (2024-09-11T19:31:56Z) - MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
Downscaling, a crucial task in meteorological forecasting, enables the reconstruction of high-resolution meteorological states for target regions.
Previous downscaling methods lacked tailored designs for meteorology and encountered structural limitations.
We propose a novel model called MambaDS, which enhances the utilization of multivariable correlations and topography information.
arXiv Detail & Related papers (2024-08-20T13:45:49Z) - Generating Fine-Grained Causality in Climate Time Series Data for Forecasting and Anomaly Detection [67.40407388422514]
We design a conceptual fine-grained causal model named TBN Granger Causality.
Second, we propose an end-to-end deep generative model called TacSas, which discovers TBN Granger Causality in a generative manner.
We test TacSas on climate benchmark ERA5 for climate forecasting and the extreme weather benchmark of NOAA for extreme weather alerts.
arXiv Detail & Related papers (2024-08-08T06:47:21Z) - Observation-Guided Meteorological Field Downscaling at Station Scale: A
Benchmark and a New Method [66.80344502790231]
We extend meteorological downscaling to arbitrary scattered station scales and establish a new benchmark and dataset.
Inspired by data assimilation techniques, we integrate observational data into the downscaling process, providing multi-scale observational priors.
Our proposed method outperforms other specially designed baseline models on multiple surface variables.
arXiv Detail & Related papers (2024-01-22T14:02:56Z) - Spatially-resolved hyperlocal weather prediction and anomaly detection
using IoT sensor networks and machine learning techniques [0.0]
We propose a novel approach that combines hyperlocal weather prediction and anomaly detection using IoT sensor networks and machine learning techniques.
Our system is able to enhance the spatial resolution of predictions and effectively detect anomalies in real-time.
Our findings indicate that this system has the potential to enhance decision-making.
arXiv Detail & Related papers (2023-10-17T05:04:53Z) - Fully Convolutional Networks for Dense Water Flow Intensity Prediction
in Swedish Catchment Areas [7.324969824727792]
We propose a machine learning-based approach for predicting water flow intensities in inland watercourses.
We are the first to tackle the task of dense water flow intensity prediction.
arXiv Detail & Related papers (2023-04-04T09:28:36Z) - Deep generative model super-resolves spatially correlated multiregional
climate data [5.678539713361703]
We show an adversarial network-based machine learning enables us to correctly reconstruct the inter-regional spatial correlations in downscaling.
The proposed method has a potential application to the inter-regionally consistent assessment of the climate change impact.
We present the outcomes of another variant of the deep generative model-based downscaling approach in which the low-resolution precipitation field is substituted with the pressure field.
arXiv Detail & Related papers (2022-09-26T05:45:16Z) - Predicting the Geoeffectiveness of CMEs Using Machine Learning [0.0]
This work focuses on experimenting with different machine learning methods trained on white-light coronagraph datasets.
We develop binary classification models using logistic regression, K-Nearest Neighbors, Support Vector Machines, feed forward artificial neural networks, as well as ensemble models.
We discuss the main challenges of this task, namely the extreme imbalance between the number of geoeffective and ineffective events in our dataset.
arXiv Detail & Related papers (2022-06-23T03:56:22Z) - Increasing the accuracy and resolution of precipitation forecasts using
deep generative models [3.8073142980733]
We train a conditional Generative Adversarial Network -- coined CorrectorGAN -- to produce ensembles of high-resolution, bias-corrected forecasts.
CorrectorGAN, once trained, produces predictions in seconds on a single machine.
Results raise exciting questions about the necessity of regional models, and whether data-driven downscaling and correction methods can be transferred to data-poor regions.
arXiv Detail & Related papers (2022-03-23T09:45:12Z) - Lidar Light Scattering Augmentation (LISA): Physics-based Simulation of
Adverse Weather Conditions for 3D Object Detection [60.89616629421904]
Lidar-based object detectors are critical parts of the 3D perception pipeline in autonomous navigation systems such as self-driving cars.
They are sensitive to adverse weather conditions such as rain, snow and fog due to reduced signal-to-noise ratio (SNR) and signal-to-background ratio (SBR)
arXiv Detail & Related papers (2021-07-14T21:10:47Z) - Federated Learning in the Sky: Aerial-Ground Air Quality Sensing
Framework with UAV Swarms [53.38353133198842]
Air quality significantly affects human health, it is increasingly important to accurately and timely predict the Air Quality Index (AQI)
This paper proposes a new federated learning-based aerial-ground air quality sensing framework for fine-grained 3D air quality monitoring and forecasting.
For ground sensing systems, we propose a Graph Convolutional neural network-based Long Short-Term Memory (GC-LSTM) model to achieve accurate, real-time and future AQI inference.
arXiv Detail & Related papers (2020-07-23T13:32:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.