論文の概要: Off to new Shores: A Dataset & Benchmark for (near-)coastal Flood Inundation Forecasting
- arxiv url: http://arxiv.org/abs/2409.18591v1
- Date: Fri, 27 Sep 2024 09:51:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-01 21:55:30.128552
- Title: Off to new Shores: A Dataset & Benchmark for (near-)coastal Flood Inundation Forecasting
- Title(参考訳): 新しい海岸:(近くの)沿岸洪水の浸水予測のためのデータセットとベンチマーク
- Authors: Brandon Victor, Mathilde Letard, Peter Naylor, Karim Douch, Nicolas Longépé, Zhen He, Patrick Ebel,
- Abstract要約: 洪水は最も一般的で破壊的な自然災害の一つである。
近年の気象予知と宇宙からの洪水のマッピングは、極端な出来事を予想できる可能性を示した。
洪水範囲の直接予測を可能にするデータセットとベンチマークが欠如している。
- 参考スコア(独自算出の注目度): 7.4807361562214405
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Floods are among the most common and devastating natural hazards, imposing immense costs on our society and economy due to their disastrous consequences. Recent progress in weather prediction and spaceborne flood mapping demonstrated the feasibility of anticipating extreme events and reliably detecting their catastrophic effects afterwards. However, these efforts are rarely linked to one another and there is a critical lack of datasets and benchmarks to enable the direct forecasting of flood extent. To resolve this issue, we curate a novel dataset enabling a timely prediction of flood extent. Furthermore, we provide a representative evaluation of state-of-the-art methods, structured into two benchmark tracks for forecasting flood inundation maps i) in general and ii) focused on coastal regions. Altogether, our dataset and benchmark provide a comprehensive platform for evaluating flood forecasts, enabling future solutions for this critical challenge. Data, code & models are shared at https://github.com/Multihuntr/GFF under a CC0 license.
- Abstract(参考訳): 洪水は最も一般的で破壊的な自然災害の1つであり、その破壊的な結果によって社会と経済に大きなコストがかかる。
近年の気象予知と宇宙からの洪水のマッピングは、極端な出来事を予測し、その後に破滅的な影響を確実に検出する可能性を示した。
しかし、これらの取り組みは互いに結びつくことは滅多になく、洪水範囲の直接予測を可能にするデータセットやベンチマークが欠如している。
この問題を解決するために,洪水範囲のタイムリーな予測を可能にする新しいデータセットをキュレートする。
さらに,洪水浸水図の予測のための2つのベンチマークトラックに構成された最先端手法の代表的な評価を行う。
one (複数形 ones)
ii)沿岸地域に焦点を当てた。
さらに、私たちのデータセットとベンチマークは、洪水予測を評価するための包括的なプラットフォームを提供し、この重要な課題に対する将来の解決策を可能にします。
データ、コード、モデルはCC0ライセンスの下でhttps://github.com/Multihuntr/GFFで共有される。
関連論文リスト
- Mapping Global Floods with 10 Years of Satellite Radar Data [0.0]
本研究では,Sentinel-1 Synthetic Aperture Radar (SAR)衛星画像の雲透過性を利用した新しい深層学習洪水検出モデルを提案する。
我々は、クラウドカバレッジの影響を受けない予測を備えた、ユニークな、縦断的なグローバルな洪水範囲データセットを作成します。
我々は,エチオピアの歴史的洪水発生地域を特定し,2024年5月のケニアの洪水時のリアルタイム災害対応能力を示す。
論文 参考訳(メタデータ) (2024-11-03T02:44:32Z) - UrbanSARFloods: Sentinel-1 SLC-Based Benchmark Dataset for Urban and Open-Area Flood Mapping [24.857739769719778]
UrbanSARFloodsは、事前処理されたSentinel-1強度データと、洪水前後に取得された干渉コヒーレンス画像を含むデータセットである。
8,879ドルの512times 512$チップで、20のランドカバークラスと18の洪水イベントにまたがって807,500$km2$をカバーしている。
我々はUrbanSARFloodsを用いて、既存の最先端の畳み込みニューラルネットワーク(CNN)を、オープンかつ都市的な洪水領域のセグメンテーションに使用した。
論文 参考訳(メタデータ) (2024-06-06T14:28:43Z) - Back to the Future: GNN-based NO$_2$ Forecasting via Future Covariates [49.93577170464313]
都市全域にわたる地上監視ネットワークにおける大気質観測について検討する。
我々は過去と将来の共変分を現在の観測に埋め込む条件付きブロックを提案する。
将来の気象情報に対する条件付けは,過去の交通状況を考えるよりも影響が大きいことが判明した。
論文 参考訳(メタデータ) (2024-04-08T09:13:16Z) - Implicit Assimilation of Sparse In Situ Data for Dense & Global Storm Surge Forecasting [3.052088487918602]
ニューラルネットワークは, 沈み込みゲージデータと粗大な海洋状態の再解析とを暗黙的に同化して, 暴風の予報を行うことができることを示す。
これまでの作業は既知のゲージに限られていたが、我々のアプローチは未掘削の場所にまで拡張され、世界的な暴風雨予報への道が開かれた。
論文 参考訳(メタデータ) (2024-04-05T21:28:56Z) - Streaming Motion Forecasting for Autonomous Driving [71.7468645504988]
ストリーミングデータにおける将来の軌跡を問うベンチマークを導入し,これを「ストリーミング予測」と呼ぶ。
我々のベンチマークは本質的に、スナップショットベースのベンチマークでは見過ごされていない安全上の問題であるエージェントの消失と再出現を捉えている。
我々は,任意のスナップショットベースの予測器をストリーミング予測器に適応させることのできる,"Predictive Streamer"と呼ばれるプラグアンドプレイメタアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-10-02T17:13:16Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
農業計画や保険には1年前から予測される高品質の干ばつが不可欠だ。
私たちは、体系的なエンドツーエンドアプローチを採用するエンドツーエンドアプローチを導入することで、干ばつデータに取り組みます。
主な発見は、TransformerモデルであるEarthFormerが、正確な短期(最大6ヶ月)の予測を行う際の例外的なパフォーマンスである。
論文 参考訳(メタデータ) (2023-09-12T13:28:06Z) - Rapid Flood Inundation Forecast Using Fourier Neural Operator [77.30160833875513]
洪水浸水予測は洪水前後の緊急計画に重要な情報を提供する。
近年,高分解能な流体力学モデリングが普及しつつあるが,道路の洪水範囲やリアルタイムのビルディングレベルは依然として計算的に要求されている。
洪水範囲と浸水深度予測のためのハイブリッドプロセスベースおよびデータ駆動機械学習(ML)アプローチを提案する。
論文 参考訳(メタデータ) (2023-07-29T22:49:50Z) - An evaluation of deep learning models for predicting water depth
evolution in urban floods [59.31940764426359]
高空間分解能水深予測のための異なる深層学習モデルの比較を行った。
深層学習モデルはCADDIESセル-オートマタフラッドモデルによってシミュレーションされたデータを再現するために訓練される。
その結果,ディープラーニングモデルでは,他の手法に比べて誤差が低いことがわかった。
論文 参考訳(メタデータ) (2023-02-20T16:08:54Z) - Flood Prediction Using Machine Learning Models [0.0]
本稿では,異なる機械学習モデルを用いて洪水の予測を行うことにより,この自然災害の極端なリスクを低減することを目的とする。
その結果、どのモデルがより正確な結果をもたらすかを理解するために比較分析を行う。
論文 参考訳(メタデータ) (2022-08-02T03:59:43Z) - RainBench: Towards Global Precipitation Forecasting from Satellite
Imagery [6.462260770989231]
極端に降水するイベントは、発展途上国の経済と生活を定期的に破壊する。
データ駆動型ディープラーニングアプローチは、正確な複数日予測へのアクセスを広げる可能性がある。
現在、世界的な降雨予測の研究に特化したベンチマークデータセットは存在しない。
論文 参考訳(メタデータ) (2020-12-17T15:35:24Z) - Physics-informed GANs for Coastal Flood Visualization [65.54626149826066]
我々は,現在および将来の沿岸洪水の衛星画像を生成する深層学習パイプラインを構築した。
物理に基づく洪水図と比較して画像を評価することにより,提案手法は物理的一貫性とフォトリアリズムの両方において,ベースラインモデルよりも優れていることがわかった。
この研究は沿岸の洪水の可視化に焦点が当てられているが、気候変動が地球をどう形作るかのグローバルな可視化を作成することを想定している。
論文 参考訳(メタデータ) (2020-10-16T02:15:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。