論文の概要: RainBench: Towards Global Precipitation Forecasting from Satellite
Imagery
- arxiv url: http://arxiv.org/abs/2012.09670v1
- Date: Thu, 17 Dec 2020 15:35:24 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-02 16:16:18.541503
- Title: RainBench: Towards Global Precipitation Forecasting from Satellite
Imagery
- Title(参考訳): RainBench: 衛星画像による世界の降水予測に向けて
- Authors: Christian Schroeder de Witt, Catherine Tong, Valentina Zantedeschi,
Daniele De Martini, Freddie Kalaitzis, Matthew Chantry, Duncan Watson-Parris,
Piotr Bilinski
- Abstract要約: 極端に降水するイベントは、発展途上国の経済と生活を定期的に破壊する。
データ駆動型ディープラーニングアプローチは、正確な複数日予測へのアクセスを広げる可能性がある。
現在、世界的な降雨予測の研究に特化したベンチマークデータセットは存在しない。
- 参考スコア(独自算出の注目度): 6.462260770989231
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Extreme precipitation events, such as violent rainfall and hail storms,
routinely ravage economies and livelihoods around the developing world. Climate
change further aggravates this issue. Data-driven deep learning approaches
could widen the access to accurate multi-day forecasts, to mitigate against
such events. However, there is currently no benchmark dataset dedicated to the
study of global precipitation forecasts. In this paper, we introduce
\textbf{RainBench}, a new multi-modal benchmark dataset for data-driven
precipitation forecasting. It includes simulated satellite data, a selection of
relevant meteorological data from the ERA5 reanalysis product, and IMERG
precipitation data. We also release \textbf{PyRain}, a library to process large
precipitation datasets efficiently. We present an extensive analysis of our
novel dataset and establish baseline results for two benchmark medium-range
precipitation forecasting tasks. Finally, we discuss existing data-driven
weather forecasting methodologies and suggest future research avenues.
- Abstract(参考訳): 激しい降雨や暴風雨のような極端な降雨は、発展途上国の経済や生活を日常的に破壊する。
気候変動はこの問題をさらに悪化させる。
データ駆動型ディープラーニングアプローチは、そのようなイベントを緩和するために、正確な複数日予測へのアクセスを広げる可能性がある。
しかし、世界の降水量予測の研究に特化したベンチマークデータセットは今のところ存在しない。
本稿では,データ駆動降水予測のための新しいマルチモーダルベンチマークデータセットである \textbf{RainBench} を紹介する。
これには、シミュレーションされた衛星データ、era5の再分析製品からの関連する気象データの選択、およびimergの降水データが含まれる。
また、大規模な降水データセットを効率的に処理するライブラリである \textbf{PyRain} もリリースしています。
本研究では,提案するデータセットを広範囲に分析し,中規模降水予測タスクのベースラインを2つ確立する。
最後に,既存の気象予報手法について考察し,今後の研究方法を提案する。
関連論文リスト
- Deep Learning for Weather Forecasting: A CNN-LSTM Hybrid Model for Predicting Historical Temperature Data [7.559331742876793]
本研究では,畳み込みニューラルネットワーク(CNN)とLong Short-Term Memory(LSTM)を併用したハイブリッドモデルを提案する。
CNNは空間的特徴抽出に利用され、LSTMは時間的依存を処理し、予測精度と安定性が大幅に向上する。
論文 参考訳(メタデータ) (2024-10-19T03:38:53Z) - Data-driven rainfall prediction at a regional scale: a case study with Ghana [4.028179670997471]
最先端の数値天気予報(NWP)モデルは、アフリカの熱帯地域で熟練した降雨予測を作成するのに苦労している。
2つのU-Net畳み込みニューラルネットワーク(CNN)モデルを開発し、12時間と30時間リード時の24時間降雨を予測する。
また,従来のNWPモデルとデータ駆動モデルを組み合わせることにより,予測精度が向上することがわかった。
論文 参考訳(メタデータ) (2024-10-17T22:07:53Z) - Observation-Guided Meteorological Field Downscaling at Station Scale: A
Benchmark and a New Method [66.80344502790231]
気象学的ダウンスケーリングを任意の散乱ステーションスケールに拡張し、新しいベンチマークとデータセットを確立する。
データ同化技術にインスパイアされた我々は、観測データをダウンスケーリングプロセスに統合し、マルチスケールの観測先行情報を提供する。
提案手法は、複数の曲面変数上で、他の特別に設計されたベースラインモデルよりも優れている。
論文 参考訳(メタデータ) (2024-01-22T14:02:56Z) - SCTc-TE: A Comprehensive Formulation and Benchmark for Temporal Event Forecasting [63.01035584154509]
私たちは完全に自動化されたパイプラインを開発し、約0.6百万のニュース記事からMidEast-TEという大規模なデータセットを構築しました。
このデータセットは、2015年から2022年まで、主に中東地域での協力と紛争イベントに焦点を当てている。
そこで本稿では,SCTc-TE予測にローカルコンテキストとグローバルコンテキストの両方を活用可能なLoGoを提案する。
論文 参考訳(メタデータ) (2023-12-02T07:40:21Z) - A Distributed Approach to Meteorological Predictions: Addressing Data
Imbalance in Precipitation Prediction Models through Federated Learning and
GANs [0.0]
気象データの分類は、気象現象をクラスに分類することで、微妙な分析と正確な予測を容易にする。
分類アルゴリズムは、データ不均衡のような課題を巧みにナビゲートすることが不可欠である。
データ拡張技術は、稀だが重要な気象事象を分類する際のモデルの精度を向上させることができる。
論文 参考訳(メタデータ) (2023-10-19T21:28:20Z) - PostRainBench: A comprehensive benchmark and a new model for precipitation forecasting [14.855615256498]
数値気象予報(NWP)の事後処理に基づく降水予測に着目する。
我々は,包括的マルチ変数NWP後処理ベンチマークである textbfPostRainBench と,シンプルで効果的なChannel Attention Enhanced Multi-task Learning フレームワークである textbfCAMT を紹介する。
我々のモデルは,大雨条件下でNWPアプローチより優れた深層学習に基づく最初の手法である。
論文 参考訳(メタデータ) (2023-10-04T09:27:39Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
農業計画や保険には1年前から予測される高品質の干ばつが不可欠だ。
私たちは、体系的なエンドツーエンドアプローチを採用するエンドツーエンドアプローチを導入することで、干ばつデータに取り組みます。
主な発見は、TransformerモデルであるEarthFormerが、正確な短期(最大6ヶ月)の予測を行う際の例外的なパフォーマンスである。
論文 参考訳(メタデータ) (2023-09-12T13:28:06Z) - GraphCast: Learning skillful medium-range global weather forecasting [107.40054095223779]
我々は、再分析データから直接トレーニングできる「GraphCast」と呼ばれる機械学習ベースの手法を導入する。
全世界で10日以上、0.25度で、数百の気象変動を1分以内で予測する。
我々は,GraphCastが1380の検証対象の90%において,最も正確な運用決定システムよりも優れていることを示す。
論文 参考訳(メタデータ) (2022-12-24T18:15:39Z) - Pangu-Weather: A 3D High-Resolution Model for Fast and Accurate Global
Weather Forecast [91.9372563527801]
我々は,世界天気予報を迅速かつ高精度に予測するためのディープラーニングベースのシステムであるPangu-Weatherを紹介する。
初めてAIベースの手法が、最先端の数値天気予報法(NWP)を精度で上回った。
Pangu-Weatherは、極端な天気予報や大規模なアンサンブル予測など、幅広い下流予測シナリオをサポートしている。
論文 参考訳(メタデータ) (2022-11-03T17:19:43Z) - IowaRain: A Statewide Rain Event Dataset Based on Weather Radars and
Quantitative Precipitation Estimation [0.0]
本研究はアイオワ州における降雨イベントの広範なデータセットを提示する。
予測モデリングと規範モデリングの両方に道を開くことで、より優れた災害監視、応答、復旧に使用できる。
論文 参考訳(メタデータ) (2021-07-07T18:30:38Z) - A generative adversarial network approach to (ensemble) weather
prediction [91.3755431537592]
本研究では,500hPaの圧力レベル,2m温度,24時間の総降水量を予測するために,条件付き深部畳み込み生成対向ネットワークを用いた。
提案されたモデルは、2019年に関連する気象分野を予測することを目的として、2015年から2018年までの4年間のERA5の再分析データに基づいて訓練されている。
論文 参考訳(メタデータ) (2020-06-13T20:53:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。