論文の概要: Fault-Tolerant Belief Propagation for Practical Quantum Memory
- arxiv url: http://arxiv.org/abs/2409.18689v1
- Date: Fri, 27 Sep 2024 12:21:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-01 16:10:18.731549
- Title: Fault-Tolerant Belief Propagation for Practical Quantum Memory
- Title(参考訳): 実用的量子メモリのためのフォールトトレラントな信念伝播
- Authors: Kao-Yueh Kuo, Ching-Yi Lai,
- Abstract要約: 信頼性量子メモリに対するフォールトトレラントなアプローチは、スケーラブルな量子コンピューティングには不可欠である。
本稿では,複数ラウンドのシンドローム抽出と混合アルファベット誤差変数を用いた時空間タナーグラフを用いたデコーダを提案する。
シミュレーションでは,0.4%-0.87%のエラーしきい値とトポロジカルコード群に対する強いエラーフロア性能を示す。
- 参考スコア(独自算出の注目度): 6.322831694506286
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A fault-tolerant approach to reliable quantum memory is essential for scalable quantum computing, as physical qubits are susceptible to noise. Quantum error correction (QEC) must be continuously performed to prolong the memory lifetime. In QEC, error syndromes are generated rapidly, often within the execution time of a few quantum gates, requiring decoders to process this error data with equal speed. A typical QEC cycle involves multiple rounds of syndrome measurements, causing potential error locations to scale rapidly with the code size and the number of measurement rounds. However, no such decoders currently exist for general quantum low-density parity-check codes. In this paper, we propose a fault-tolerant belief propagation (FTBP) decoder that utilizes a space-time Tanner graph across multiple rounds of syndrome extraction with mixed-alphabet error variables. To enhance FTBP, we introduce a technique of probabilistic error consolidation to mitigate degeneracy effects and short cycles. Additionally, we propose an adaptive sliding window procedure that captures long error events across window boundaries and adjusts the decoding in real time. Our simulations demonstrate high error thresholds of 0.4%-0.87% and strong error-floor performance for topological code families, including rotated toric, toric color, and twisted XZZX toric codes.
- Abstract(参考訳): 物理量子ビットはノイズの影響を受けやすいため、信頼性の高い量子メモリに対するフォールトトレラントなアプローチはスケーラブルな量子コンピューティングに不可欠である。
量子誤り訂正(QEC)は、記憶寿命を延ばすために連続的に行う必要がある。
QECでは、エラーシンドロームは数個の量子ゲートの実行時間内で急速に生成され、デコーダがこのエラーデータを同じ速度で処理する必要がある。
典型的なQECサイクルは、複数の症候群測定ラウンドを伴い、コードサイズと測定ラウンド数に応じて潜在的なエラー位置が急速にスケールする。
しかしながら、一般的な量子低密度パリティチェック符号にはそのようなデコーダは存在しない。
本稿では,複数ラウンドのシンドローム抽出と混合アルファベット誤差変数を用いた時空間タナーグラフを用いたFTBPデコーダを提案する。
FTBPを向上させるために,縮退効果と短周期を緩和する確率的誤差統合手法を提案する。
さらに、ウィンドウ境界を越えて長いエラーイベントをキャプチャし、デコードをリアルタイムで調整する適応型スライディングウインドウプロシージャを提案する。
本シミュレーションでは, トリック回転, トリック色, ツイストXZXトリックコードを含むトポロジカルコード群に対して, 0.4%-0.87%のエラー閾値と強いエラーフロア性能を示す。
関連論文リスト
- Degenerate quantum erasure decoding [7.6119527195998025]
明示的なコードと効率的なデコーダを用いて、ニアキャパシティ性能を実現する方法を示す。
さらに、混合消去や非分極エラーなど、他のエラーモデルを扱うデコーダの可能性についても検討する。
論文 参考訳(メタデータ) (2024-11-20T18:02:05Z) - Demonstrating real-time and low-latency quantum error correction with superconducting qubits [52.08698178354922]
超伝導量子プロセッサに組み込まれたスケーラブルFPGAデコーダを用いて低遅延フィードバックを示す。
復号ラウンド数が増加するにつれて、論理誤差の抑制が観察される。
この作業でデコーダのスループットとレイテンシが発達し、デバイスの継続的な改善と相まって、次世代の実験がアンロックされた。
論文 参考訳(メタデータ) (2024-10-07T17:07:18Z) - Algorithmic Fault Tolerance for Fast Quantum Computing [37.448838730002905]
本研究では,幅広い種類の量子コードに対して,一定の時間オーバーヘッドでフォールトトレラントな論理演算を実行できることを示す。
理想的な測定結果分布からの偏差をコード距離で指数関数的に小さくできることを示す。
我々の研究は、フォールトトレランスの理論に新たな光を当て、実用的なフォールトトレラント量子計算の時空間コストを桁違いに削減する可能性がある。
論文 参考訳(メタデータ) (2024-06-25T15:43:25Z) - Analysis of Maximum Threshold and Quantum Security for Fault-Tolerant
Encoding and Decoding Scheme Base on Steane Code [10.853582091917236]
エンコードされたブロックのCNOTゲートがエラーの伝播を引き起こす可能性があるため、オリジナルのSteaneコードはフォールトトレラントではない。
まず, 誤り訂正期間において, 量子ゲート毎に発生する全てのエラーを解析するフォールトトレラント符号化・復号方式を提案する。
次に、耐故障性の準備とアシラリー状態の検証を含む、普遍量子ゲート集合の耐故障性スキームを提供する。
論文 参考訳(メタデータ) (2024-03-07T07:46:03Z) - Deep Quantum Error Correction [73.54643419792453]
量子誤り訂正符号(QECC)は、量子コンピューティングのポテンシャルを実現するための鍵となる要素である。
本研究では,新しいエンペンド・ツー・エンドの量子誤りデコーダを効率的に訓練する。
提案手法は,最先端の精度を実現することにより,QECCのニューラルデコーダのパワーを実証する。
論文 参考訳(メタデータ) (2023-01-27T08:16:26Z) - Overcoming leakage in scalable quantum error correction [128.39402546769284]
計算状態から高エネルギー状態への量子情報の漏洩は、量子誤り訂正(QEC)の追求における大きな課題である。
本稿では,Sycamore量子プロセッサ上で,各サイクルの全てのキュービットから漏れが除去される距離3曲面符号と距離21ビットフリップ符号の実行を実演する。
本報告では, 論理状態を符号化したデータキュービットにおける定常リーク集団の10倍の減少と, デバイス全体の平均リーク人口の1/10〜3ドルの減少を報告した。
論文 参考訳(メタデータ) (2022-11-09T07:54:35Z) - Improved decoding of circuit noise and fragile boundaries of tailored
surface codes [61.411482146110984]
高速かつ高精度なデコーダを導入し、幅広い種類の量子誤り訂正符号で使用することができる。
我々のデコーダは、信仰マッチングと信念フィンドと呼ばれ、すべてのノイズ情報を活用し、QECの高精度なデモを解き放つ。
このデコーダは, 標準の正方形曲面符号に対して, 整形曲面符号において, より高いしきい値と低い量子ビットオーバーヘッドをもたらすことがわかった。
論文 参考訳(メタデータ) (2022-03-09T18:48:54Z) - Erasure conversion for fault-tolerant quantum computing in alkaline
earth Rydberg atom arrays [3.575043595126111]
本稿では,物理誤差を消去に変換する171ドルYb中性原子量子ビットに対して,量子ビット符号化とゲートプロトコルを提案する。
エラーの98%を消去に変換できると見積もっている。
論文 参考訳(メタデータ) (2022-01-10T18:56:31Z) - Performance of teleportation-based error correction circuits for bosonic
codes with noisy measurements [58.720142291102135]
テレポーテーションに基づく誤り訂正回路を用いて、回転対称符号の誤り訂正能力を解析する。
マイクロ波光学における現在達成可能な測定効率により, ボソニック回転符号の破壊ポテンシャルは著しく低下することが判明した。
論文 参考訳(メタデータ) (2021-08-02T16:12:13Z) - Exponential suppression of bit or phase flip errors with repetitive
error correction [56.362599585843085]
最先端の量子プラットフォームは通常、物理的エラーレートが10~3ドル近くである。
量子誤り訂正(QEC)は、多くの物理量子ビットに量子論理情報を分散することで、この分割を橋渡しすることを約束する。
超伝導量子ビットの2次元格子に埋め込まれた1次元繰り返し符号を実装し、ビットまたは位相フリップ誤差の指数的抑制を示す。
論文 参考訳(メタデータ) (2021-02-11T17:11:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。