A History-Guided Regional Partitioning Evolutionary Optimization for Solving the Flexible Job Shop Problem with Limited Multi-load Automated Guided Vehicles
- URL: http://arxiv.org/abs/2409.18742v1
- Date: Fri, 27 Sep 2024 13:33:19 GMT
- Title: A History-Guided Regional Partitioning Evolutionary Optimization for Solving the Flexible Job Shop Problem with Limited Multi-load Automated Guided Vehicles
- Authors: Feige Liu, Chao Lu, Xin Li,
- Abstract summary: This study proposes a history-guided regional partitioning algorithm (HRPEO) for the flexible job shop scheduling problem with limited multi-load AGVs.
The results show that the HRPEO has a better advantage in solving FJSPMA.
- Score: 6.3926046314748834
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In a flexible job shop environment, using Automated Guided Vehicles (AGVs) to transport jobs and process materials is an important way to promote the intelligence of the workshop. Compared with single-load AGVs, multi-load AGVs can improve AGV utilization, reduce path conflicts, etc. Therefore, this study proposes a history-guided regional partitioning algorithm (HRPEO) for the flexible job shop scheduling problem with limited multi-load AGVs (FJSPMA). First, the encoding and decoding rules are designed according to the characteristics of multi-load AGVs, and then the initialization rule based on the branch and bound method is used to generate the initial population. Second, to prevent the algorithm from falling into a local optimum, the algorithm adopts a regional partitioning strategy. This strategy divides the solution space into multiple regions and measures the potential of the regions. After that, cluster the regions into multiple clusters in each iteration, and selects individuals for evolutionary search based on the set of clusters. Third, a local search strategy is designed to improve the exploitation ability of the algorithm, which uses a greedy approach to optimize machines selection and transportation sequence according to the characteristics of FJSPMA. Finally, a large number of experiments are carried out on the benchmarks to test the performance of the algorithm. Compared with multiple advanced algorithms, the results show that the HRPEO has a better advantage in solving FJSPMA.
Related papers
- Faster Optimal Coalition Structure Generation via Offline Coalition Selection and Graph-Based Search [61.08720171136229]
We present a novel algorithm, SMART, for the problem based on a hybridization of three innovative techniques.
Two of these techniques are based on dynamic programming, where we show a powerful connection between the coalitions selected for evaluation and the performance of the algorithms.
Our techniques bring a new way of approaching the problem and a new level of precision to the field.
arXiv Detail & Related papers (2024-07-22T23:24:03Z) - Thompson sampling for improved exploration in GFlowNets [75.89693358516944]
Generative flow networks (GFlowNets) are amortized variational inference algorithms that treat sampling from a distribution over compositional objects as a sequential decision-making problem with a learnable action policy.
We show in two domains that TS-GFN yields improved exploration and thus faster convergence to the target distribution than the off-policy exploration strategies used in past work.
arXiv Detail & Related papers (2023-06-30T14:19:44Z) - New Characterizations and Efficient Local Search for General Integer
Linear Programming [17.80124240223163]
This work proposes new characterizations of linear programming (ILP) with the concept of boundary solutions.
We develop a new local search algorithm Local-ILP, which is efficient for solving general ILP validated on a large heterogeneous problem dataset.
Experiments conducted on the MIPLIB dataset show the effectiveness of our algorithm in solving large-scale hard ILP problems.
arXiv Detail & Related papers (2023-04-29T07:22:07Z) - A Reinforcement Learning-assisted Genetic Programming Algorithm for Team
Formation Problem Considering Person-Job Matching [70.28786574064694]
A reinforcement learning-assisted genetic programming algorithm (RL-GP) is proposed to enhance the quality of solutions.
The hyper-heuristic rules obtained through efficient learning can be utilized as decision-making aids when forming project teams.
arXiv Detail & Related papers (2023-04-08T14:32:12Z) - Late Fusion Multi-view Clustering via Global and Local Alignment
Maximization [61.89218392703043]
Multi-view clustering (MVC) optimally integrates complementary information from different views to improve clustering performance.
Most of existing approaches directly fuse multiple pre-specified similarities to learn an optimal similarity matrix for clustering.
We propose late fusion MVC via alignment to address these issues.
arXiv Detail & Related papers (2022-08-02T01:49:31Z) - Flipping the switch on local exploration: Genetic Algorithms with
Reversals [0.0]
Authors show that gradient-free search techniques are suitable for providing an optimal solution in the discrete domain.
They also show that the use of multiple local searches can improve performance on local searches.
It is observed that the proposed GA variants have the least average cost across all benchmarks including the problem proposed and IC performs better than its constituents.
arXiv Detail & Related papers (2022-02-02T08:27:11Z) - Learning Space Partitions for Path Planning [54.475949279050596]
PlaLaM outperforms existing path planning methods in 2D navigation tasks, especially in the presence of difficult-to-escape local optima.
These gains transfer to highly multimodal real-world tasks, where we outperform strong baselines in compiler phase ordering by up to 245% and in molecular design by up to 0.4 on properties on a 0-1 scale.
arXiv Detail & Related papers (2021-06-19T18:06:11Z) - Boosted Genetic Algorithm using Machine Learning for traffic control
optimization [4.642759477873937]
This paper presents a novel methodology for optimizing the traffic signal timings in signalized urban intersections.
With the purpose of producing fast and reliable decisions, we combine the fast running Machine Learning (ML) algorithms and the reliable Genetic Algorithms (GA)
We show that the new BGA-ML is much faster than the original GA algorithm and can be successfully applied under non-recurrent incident conditions.
arXiv Detail & Related papers (2021-03-11T00:39:18Z) - Domain Adaptive Person Re-Identification via Coupling Optimization [58.567492812339566]
Domain adaptive person Re-Identification (ReID) is challenging owing to the domain gap and shortage of annotations on target scenarios.
This paper proposes a coupling optimization method including the Domain-Invariant Mapping (DIM) method and the Global-Local distance Optimization ( GLO)
GLO is designed to train the ReID model with unsupervised setting on the target domain.
arXiv Detail & Related papers (2020-11-06T14:01:03Z) - A Hybrid Multi-Objective Carpool Route Optimization Technique using
Genetic Algorithm and A* Algorithm [0.0]
This work presents a hybrid GA-A* algorithm to obtain optimal routes for the carpooling problem.
The routes obtained maximize the profit of the service provider by minimizing the travel and detour distance as well as pick-up/drop costs.
The proposed algorithm has been implemented over the Salt Lake area of Kolkata.
arXiv Detail & Related papers (2020-07-11T14:13:20Z) - A Tailored NSGA-III Instantiation for Flexible Job Shop Scheduling [18.401817124823832]
A customized evolutionary algorithm is proposed to solve the flexible job scheduling problem.
Different local search strategies are employed to explore the neighborhood parameters for better solutions.
The experimental results show excellent performance with less computing budget.
arXiv Detail & Related papers (2020-04-14T14:49:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.