Classical Statistical (In-Sample) Intuitions Don't Generalize Well: A Note on Bias-Variance Tradeoffs, Overfitting and Moving from Fixed to Random Designs
- URL: http://arxiv.org/abs/2409.18842v1
- Date: Fri, 27 Sep 2024 15:36:24 GMT
- Title: Classical Statistical (In-Sample) Intuitions Don't Generalize Well: A Note on Bias-Variance Tradeoffs, Overfitting and Moving from Fixed to Random Designs
- Authors: Alicia Curth,
- Abstract summary: We show that there is another reason why we observe behaviors today that appear at odds with intuitions taught in classical statistics textbooks.
We highlight that this simple move from fixed to random designs has far-reaching consequences on textbook intuitions.
- Score: 11.893324664457548
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The sudden appearance of modern machine learning (ML) phenomena like double descent and benign overfitting may leave many classically trained statisticians feeling uneasy -- these phenomena appear to go against the very core of statistical intuitions conveyed in any introductory class on learning from data. The historical lack of earlier observation of such phenomena is usually attributed to today's reliance on more complex ML methods, overparameterization, interpolation and/or higher data dimensionality. In this note, we show that there is another reason why we observe behaviors today that appear at odds with intuitions taught in classical statistics textbooks, which is much simpler to understand yet rarely discussed explicitly. In particular, many intuitions originate in fixed design settings, in which in-sample prediction error (under resampling of noisy outcomes) is of interest, while modern ML evaluates its predictions in terms of generalization error, i.e. out-of-sample prediction error in random designs. Here, we highlight that this simple move from fixed to random designs has (perhaps surprisingly) far-reaching consequences on textbook intuitions relating to the bias-variance tradeoff, and comment on the resulting (im)possibility of observing double descent and benign overfitting in fixed versus random designs.
Related papers
- Mechanism learning: Reverse causal inference in the presence of multiple unknown confounding through front-door causal bootstrapping [0.8901073744693314]
A major limitation of machine learning (ML) prediction models is that they recover associational, rather than causal, predictive relationships between variables.
This paper proposes mechanism learning, a simple method which uses front-door causal bootstrapping to deconfound observational data.
We test our method on fully synthetic, semi-synthetic and real-world datasets, demonstrating that it can discover reliable, unbiased, causal ML predictors.
arXiv Detail & Related papers (2024-10-26T03:34:55Z) - Revisiting Optimism and Model Complexity in the Wake of Overparameterized Machine Learning [6.278498348219108]
We revisit model complexity from first principles, by first reinterpreting and then extending the classical statistical concept of (effective) degrees of freedom.
We demonstrate the utility of our proposed complexity measures through a mix of conceptual arguments, theory, and experiments.
arXiv Detail & Related papers (2024-10-02T06:09:57Z) - Random features models: a way to study the success of naive imputation [0.0]
Constant (naive) imputation is still widely used in practice as this is a first easy-to-use technique to deal with missing data.
Recent works suggest that this bias is low in the context of high-dimensional linear predictors.
This paper confirms the intuition that the bias is negligible and that surprisingly naive imputation also remains relevant in very low dimension.
arXiv Detail & Related papers (2024-02-06T09:37:06Z) - A U-turn on Double Descent: Rethinking Parameter Counting in Statistical
Learning [68.76846801719095]
We show that double descent appears exactly when and where it occurs, and that its location is not inherently tied to the threshold p=n.
This provides a resolution to tensions between double descent and statistical intuition.
arXiv Detail & Related papers (2023-10-29T12:05:39Z) - It's an Alignment, Not a Trade-off: Revisiting Bias and Variance in Deep
Models [51.66015254740692]
We show that for an ensemble of deep learning based classification models, bias and variance are emphaligned at a sample level.
We study this phenomenon from two theoretical perspectives: calibration and neural collapse.
arXiv Detail & Related papers (2023-10-13T17:06:34Z) - Can predictive models be used for causal inference? [0.0]
Supervised machine learning (ML) and deep learning (DL) algorithms excel at predictive tasks.
It is commonly assumed that they often do so by exploiting non-causal correlations.
We show that this trade-off between explanation and prediction is not as deep and fundamental as expected.
arXiv Detail & Related papers (2023-06-18T13:11:36Z) - Explainable Deep Few-shot Anomaly Detection with Deviation Networks [123.46611927225963]
We introduce a novel weakly-supervised anomaly detection framework to train detection models.
The proposed approach learns discriminative normality by leveraging the labeled anomalies and a prior probability.
Our model is substantially more sample-efficient and robust, and performs significantly better than state-of-the-art competing methods in both closed-set and open-set settings.
arXiv Detail & Related papers (2021-08-01T14:33:17Z) - The Role of Mutual Information in Variational Classifiers [47.10478919049443]
We study the generalization error of classifiers relying on encodings trained on the cross-entropy loss.
We derive bounds to the generalization error showing that there exists a regime where the generalization error is bounded by the mutual information.
arXiv Detail & Related papers (2020-10-22T12:27:57Z) - Deducing neighborhoods of classes from a fitted model [68.8204255655161]
In this article a new kind of interpretable machine learning method is presented.
It can help to understand the partitioning of the feature space into predicted classes in a classification model using quantile shifts.
Basically, real data points (or specific points of interest) are used and the changes of the prediction after slightly raising or decreasing specific features are observed.
arXiv Detail & Related papers (2020-09-11T16:35:53Z) - Ambiguity in Sequential Data: Predicting Uncertain Futures with
Recurrent Models [110.82452096672182]
We propose an extension of the Multiple Hypothesis Prediction (MHP) model to handle ambiguous predictions with sequential data.
We also introduce a novel metric for ambiguous problems, which is better suited to account for uncertainties.
arXiv Detail & Related papers (2020-03-10T09:15:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.