Mechanism learning: Reverse causal inference in the presence of multiple unknown confounding through front-door causal bootstrapping
- URL: http://arxiv.org/abs/2410.20057v1
- Date: Sat, 26 Oct 2024 03:34:55 GMT
- Title: Mechanism learning: Reverse causal inference in the presence of multiple unknown confounding through front-door causal bootstrapping
- Authors: Jianqiao Mao, Max A. Little,
- Abstract summary: A major limitation of machine learning (ML) prediction models is that they recover associational, rather than causal, predictive relationships between variables.
This paper proposes mechanism learning, a simple method which uses front-door causal bootstrapping to deconfound observational data.
We test our method on fully synthetic, semi-synthetic and real-world datasets, demonstrating that it can discover reliable, unbiased, causal ML predictors.
- Score: 0.8901073744693314
- License:
- Abstract: A major limitation of machine learning (ML) prediction models is that they recover associational, rather than causal, predictive relationships between variables. In high-stakes automation applications of ML this is problematic, as the model often learns spurious, non-causal associations. This paper proposes mechanism learning, a simple method which uses front-door causal bootstrapping to deconfound observational data such that any appropriate ML model is forced to learn predictive relationships between effects and their causes (reverse causal inference), despite the potential presence of multiple unknown and unmeasured confounding. Effect variables can be very high dimensional, and the predictive relationship nonlinear, as is common in ML applications. This novel method is widely applicable, the only requirement is the existence of a mechanism variable mediating the cause (prediction target) and effect (feature data), which is independent of the (unmeasured) confounding variables. We test our method on fully synthetic, semi-synthetic and real-world datasets, demonstrating that it can discover reliable, unbiased, causal ML predictors where by contrast, the same ML predictor trained naively using classical supervised learning on the original observational data, is heavily biased by spurious associations. We provide code to implement the results in the paper, online.
Related papers
- The Multiple Dimensions of Spuriousness in Machine Learning [3.475875199871536]
Learning correlations from data forms the foundation of today's machine learning (ML) and artificial intelligence (AI) research.
While such an approach enables the automatic discovery of patterned relationships within big data corpora, it is susceptible to failure modes when unintended correlations are captured.
This vulnerability has expanded interest in interrogating spuriousness, often critiqued as an impediment to model performance, fairness, and robustness.
arXiv Detail & Related papers (2024-11-07T13:29:32Z) - Estimating Causal Effects from Learned Causal Networks [56.14597641617531]
We propose an alternative paradigm for answering causal-effect queries over discrete observable variables.
We learn the causal Bayesian network and its confounding latent variables directly from the observational data.
We show that this emphmodel completion learning approach can be more effective than estimand approaches.
arXiv Detail & Related papers (2024-08-26T08:39:09Z) - Assumption-Lean and Data-Adaptive Post-Prediction Inference [1.5050365268347254]
We introduce PoSt-Prediction Adaptive inference (PSPA) that allows valid and powerful inference based on ML-predicted data.
We demonstrate the statistical superiority and broad applicability of our method through simulations and real-data applications.
arXiv Detail & Related papers (2023-11-23T22:41:30Z) - Can predictive models be used for causal inference? [0.0]
Supervised machine learning (ML) and deep learning (DL) algorithms excel at predictive tasks.
It is commonly assumed that they often do so by exploiting non-causal correlations.
We show that this trade-off between explanation and prediction is not as deep and fundamental as expected.
arXiv Detail & Related papers (2023-06-18T13:11:36Z) - Advancing Counterfactual Inference through Nonlinear Quantile Regression [77.28323341329461]
We propose a framework for efficient and effective counterfactual inference implemented with neural networks.
The proposed approach enhances the capacity to generalize estimated counterfactual outcomes to unseen data.
Empirical results conducted on multiple datasets offer compelling support for our theoretical assertions.
arXiv Detail & Related papers (2023-06-09T08:30:51Z) - A Causal Framework for Decomposing Spurious Variations [68.12191782657437]
We develop tools for decomposing spurious variations in Markovian and Semi-Markovian models.
We prove the first results that allow a non-parametric decomposition of spurious effects.
The described approach has several applications, ranging from explainable and fair AI to questions in epidemiology and medicine.
arXiv Detail & Related papers (2023-06-08T09:40:28Z) - The worst of both worlds: A comparative analysis of errors in learning
from data in psychology and machine learning [17.336655978572583]
Recent concerns that machine learning (ML) may be facing a misdiagnosis and replication crisis suggest that some published claims in ML research cannot be taken at face value.
A deeper understanding of what concerns in research in supervised ML have in common with the replication crisis in experimental science can put the new concerns in perspective.
arXiv Detail & Related papers (2022-03-12T18:26:24Z) - Counterfactual Maximum Likelihood Estimation for Training Deep Networks [83.44219640437657]
Deep learning models are prone to learning spurious correlations that should not be learned as predictive clues.
We propose a causality-based training framework to reduce the spurious correlations caused by observable confounders.
We conduct experiments on two real-world tasks: Natural Language Inference (NLI) and Image Captioning.
arXiv Detail & Related papers (2021-06-07T17:47:16Z) - Efficient Causal Inference from Combined Observational and
Interventional Data through Causal Reductions [68.6505592770171]
Unobserved confounding is one of the main challenges when estimating causal effects.
We propose a novel causal reduction method that replaces an arbitrary number of possibly high-dimensional latent confounders.
We propose a learning algorithm to estimate the parameterized reduced model jointly from observational and interventional data.
arXiv Detail & Related papers (2021-03-08T14:29:07Z) - The Predictive Normalized Maximum Likelihood for Over-parameterized
Linear Regression with Norm Constraint: Regret and Double Descent [12.929639356256928]
We show that modern machine learning models do not obey a trade-off between the complexity of a prediction rule and its ability to generalize.
We use the recently proposed predictive normalized maximum likelihood (pNML) which is the min-max regret solution for individual data.
We demonstrate the use of the pNML regret as a point-wise learnability measure on synthetic data and that it can successfully predict the double-decent phenomenon.
arXiv Detail & Related papers (2021-02-14T15:49:04Z) - Localized Debiased Machine Learning: Efficient Inference on Quantile
Treatment Effects and Beyond [69.83813153444115]
We consider an efficient estimating equation for the (local) quantile treatment effect ((L)QTE) in causal inference.
Debiased machine learning (DML) is a data-splitting approach to estimating high-dimensional nuisances.
We propose localized debiased machine learning (LDML), which avoids this burdensome step.
arXiv Detail & Related papers (2019-12-30T14:42:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.