論文の概要: Two Sparse Matrices are Better than One: Sparsifying Neural Networks with Double Sparse Factorization
- arxiv url: http://arxiv.org/abs/2409.18850v1
- Date: Fri, 27 Sep 2024 15:48:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-01 08:58:26.807146
- Title: Two Sparse Matrices are Better than One: Sparsifying Neural Networks with Double Sparse Factorization
- Title(参考訳): 2つのスパース行列は1より優れている:二重スパース因子分解によるスペースニューラルネットワーク
- Authors: Vladimír Boža, Vladimír Macko,
- Abstract要約: 重み行列を2つのスパース行列に分解するDouble Sparse Factorization(DSF)を提案する。
提案手法は最先端の結果を達成し,従来のニューラルネットワークのスペーサー化を可能にした。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Neural networks are often challenging to work with due to their large size and complexity. To address this, various methods aim to reduce model size by sparsifying or decomposing weight matrices, such as magnitude pruning and low-rank or block-diagonal factorization. In this work, we present Double Sparse Factorization (DSF), where we factorize each weight matrix into two sparse matrices. Although solving this problem exactly is computationally infeasible, we propose an efficient heuristic based on alternating minimization via ADMM that achieves state-of-the-art results, enabling unprecedented sparsification of neural networks. For instance, in a one-shot pruning setting, our method can reduce the size of the LLaMA2-13B model by 50% while maintaining better performance than the dense LLaMA2-7B model. We also compare favorably with Optimal Brain Compression, the state-of-the-art layer-wise pruning approach for convolutional neural networks. Furthermore, accuracy improvements of our method persist even after further model fine-tuning. Code available at: https://github.com/usamec/double_sparse.
- Abstract(参考訳): ニューラルネットワークは、サイズと複雑さが大きいため、作業が難しいことが多い。
これを解決するために, 重量行列を縮小・分解することで, 低ランク・ブロック対角係数化などのモデルサイズを小さくすることを目的とした。
本研究では,重み行列を2つのスパース行列に分解するDouble Sparse Factorization(DSF)を提案する。
この問題の解法は正確には計算不可能であるが,ADMMによる変更最小化に基づく効率的なヒューリスティックを提案する。
例えば、1ショットプルーニング環境では、LLaMA2-13Bモデルよりも高い性能を維持しつつ、LLaMA2-13Bモデルのサイズを50%削減することができる。
また、畳み込みニューラルネットワークに対する最先端の層ワイドプルーニングアプローチであるOptimal Brain Compressionと比較した。
さらに, モデル微調整後の精度向上も継続した。
コードは、https://github.com/usamec/double_sparse.comで入手できる。
関連論文リスト
- Layer-Specific Optimization: Sensitivity Based Convolution Layers Basis Search [0.0]
畳み込み層の重みに対して行列分解を適用する新しい方法を提案する。
この方法の本質は、すべての畳み込みを訓練することではなく、畳み込みのサブセット(基底畳み込み)のみを訓練することであり、残りを基底の線形結合として表現することである。
ResNetファミリとCIFAR-10データセットによるモデル実験では、ベース畳み込みはモデルのサイズを減らすだけでなく、ネットワークの前方および後方通過を加速する。
論文 参考訳(メタデータ) (2024-08-12T09:24:48Z) - Compute Better Spent: Replacing Dense Layers with Structured Matrices [77.61728033234233]
画像領域における畳み込みネットワークの成功が示すように、高密度行列に対するより効率的な代替手段を同定する。
異なる構造は、しばしばパフォーマンスに不可欠な、非常に異なる初期化尺度と学習率を必要とする。
本稿では,モナール行列を含む新しい行列族Block-Trainを提案する。
論文 参考訳(メタデータ) (2024-06-10T13:25:43Z) - Combinatorial optimization for low bit-width neural networks [23.466606660363016]
低ビット幅のニューラルネットワークは、計算資源を減らすためにエッジデバイスに展開するために広く研究されている。
既存のアプローチでは、2段階の列車・圧縮設定における勾配に基づく最適化に焦点が当てられている。
グリーディ座標降下法とこの新しい手法を組み合わせることで、二項分類タスクにおける競合精度が得られることを示す。
論文 参考訳(メタデータ) (2022-06-04T15:02:36Z) - Monarch: Expressive Structured Matrices for Efficient and Accurate
Training [64.6871423399431]
大規模なニューラルネットワークは多くのドメインで優れているが、トレーニングや微調整は高価である。
計算やメモリ要件を減らすための一般的なアプローチは、重み付け行列を構造化行列に置き換えることである。
ハードウェア効率のよい行列(Monarch)のクラスを提案する。
論文 参考訳(メタデータ) (2022-04-01T17:37:29Z) - Algorithms for Efficiently Learning Low-Rank Neural Networks [12.916132936159713]
低ランクニューラルネットワークの学習アルゴリズムについて検討する。
単層ReLUネットワークに最適な低ランク近似を学習するアルゴリズムを提案する。
低ランク$textitdeep$ネットワークをトレーニングするための新しい低ランクフレームワークを提案する。
論文 参考訳(メタデータ) (2022-02-02T01:08:29Z) - Unfolding Projection-free SDP Relaxation of Binary Graph Classifier via
GDPA Linearization [59.87663954467815]
アルゴリズムの展開は、モデルベースのアルゴリズムの各イテレーションをニューラルネットワーク層として実装することにより、解釈可能で類似のニューラルネットワークアーキテクチャを生成する。
本稿では、Gershgorin disc perfect alignment (GDPA)と呼ばれる最近の線形代数定理を利用して、二進グラフの半定値プログラミング緩和(SDR)のためのプロジェクションフリーアルゴリズムをアンロールする。
実験結果から,我々の未学習ネットワークは純粋モデルベースグラフ分類器よりも優れ,純粋データ駆動ネットワークに匹敵する性能を示したが,パラメータははるかに少なかった。
論文 参考訳(メタデータ) (2021-09-10T07:01:15Z) - Effective Model Sparsification by Scheduled Grow-and-Prune Methods [73.03533268740605]
本稿では,高密度モデルの事前学習を伴わない新規なGrow-and-prune(GaP)手法を提案する。
実験により、そのようなモデルは様々なタスクにおいて80%の間隔で高度に最適化された高密度モデルの品質に適合または打ち勝つことができることが示された。
論文 参考訳(メタデータ) (2021-06-18T01:03:13Z) - Binarization Methods for Motor-Imagery Brain-Computer Interface
Classification [18.722731794073756]
本稿では,実数値重みを2進数に変換する手法を提案する。
2次埋め込みの次元を調整することにより、4級MI(leq$1.27%以下)で、float16重みを持つモデルと比較してほぼ同じ精度を達成する。
提案手法は,CNNの完全連結層をバイポーラランダムプロジェクションを用いたバイナリ拡張メモリに置き換える。
論文 参考訳(メタデータ) (2020-10-14T12:28:18Z) - Steepest Descent Neural Architecture Optimization: Escaping Local
Optimum with Signed Neural Splitting [60.97465664419395]
我々は、局所最適性問題に対処する分割降下フレームワークの顕著で驚くべき拡張を開発する。
分割時の正と負の両方の重みを単純に許すことで、S2Dにおける分裂安定性の出現を排除できる。
我々は,CIFAR-100, ImageNet, ModelNet40 といった,S2D などの先進的なニューラルネットワークの精度とエネルギー効率の学習方法よりも優れている,様々な挑戦的なベンチマーク上で,本手法を検証する。
論文 参考訳(メタデータ) (2020-03-23T17:09:27Z) - Model Fusion via Optimal Transport [64.13185244219353]
ニューラルネットワークのための階層モデル融合アルゴリズムを提案する。
これは、不均一な非i.d.データに基づいてトレーニングされたニューラルネットワーク間での"ワンショット"な知識伝達に成功していることを示す。
論文 参考訳(メタデータ) (2019-10-12T22:07:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。