LW2G: Learning Whether to Grow for Prompt-based Continual Learning
- URL: http://arxiv.org/abs/2409.18860v1
- Date: Fri, 27 Sep 2024 15:55:13 GMT
- Title: LW2G: Learning Whether to Grow for Prompt-based Continual Learning
- Authors: Qian Feng, Dawei Zhou, Hanbin Zhao, Chao Zhang, Hui Qian,
- Abstract summary: Recent Prompt-based Continual Learning (PCL) has achieved remarkable performance with Pre-Trained Models (PTMs)
We propose a plug-in module in the former stage to textbfLearn Whether to Grow (LW2G) based on the disparities between tasks.
Inspired by Gradient Projection Continual Learning, our LW2G develops a metric called Hinder Forward Capability (HFC) to measure the hindrance imposed on learning new tasks.
- Score: 15.766350352592331
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Continual Learning (CL) aims to learn in non-stationary scenarios, progressively acquiring and maintaining knowledge from sequential tasks. Recent Prompt-based Continual Learning (PCL) has achieved remarkable performance with Pre-Trained Models (PTMs). These approaches grow a prompt sets pool by adding a new set of prompts when learning each new task (\emph{prompt learning}) and adopt a matching mechanism to select the correct set for each testing sample (\emph{prompt retrieval}). Previous studies focus on the latter stage by improving the matching mechanism to enhance Prompt Retrieval Accuracy (PRA). To promote cross-task knowledge facilitation and form an effective and efficient prompt sets pool, we propose a plug-in module in the former stage to \textbf{Learn Whether to Grow (LW2G)} based on the disparities between tasks. Specifically, a shared set of prompts is utilized when several tasks share certain commonalities, and a new set is added when there are significant differences between the new task and previous tasks. Inspired by Gradient Projection Continual Learning, our LW2G develops a metric called Hinder Forward Capability (HFC) to measure the hindrance imposed on learning new tasks by surgically modifying the original gradient onto the orthogonal complement of the old feature space. With HFC, an automated scheme Dynamic Growing Approach adaptively learns whether to grow with a dynamic threshold. Furthermore, we design a gradient-based constraint to ensure the consistency between the updating prompts and pre-trained knowledge, and a prompts weights reusing strategy to enhance forward transfer. Extensive experiments show the effectiveness of our method. The source codes are available at \url{https://github.com/RAIAN08/LW2G}.
Related papers
- CODE-CL: COnceptor-Based Gradient Projection for DEep Continual Learning [7.573297026523597]
We introduce COnceptor-based gradient projection for DEep Continual Learning (CODE-CL)
CODE-CL encodes directional importance within the input space of past tasks, allowing new knowledge integration in directions modulated by $1-S$.
We analyze task overlap using conceptor-based representations to identify highly correlated tasks.
arXiv Detail & Related papers (2024-11-21T22:31:06Z) - Continual LLaVA: Continual Instruction Tuning in Large Vision-Language Models [93.5327725085853]
Continual LLaVA is a rehearsal-free method tailored for continual instruction tuning in LVLMs.
Experiments indicate that the proposed Continual LLaVA outperforms previous methods by significantly reducing the forgetting during the continual instruction tuning process.
arXiv Detail & Related papers (2024-11-04T19:55:32Z) - PECTP: Parameter-Efficient Cross-Task Prompts for Incremental Vision Transformer [76.39111896665585]
Incremental Learning (IL) aims to learn deep models on sequential tasks continually.
Recent vast pre-trained models (PTMs) have achieved outstanding performance by prompt technique in practical IL without the old samples.
arXiv Detail & Related papers (2024-07-04T10:37:58Z) - Adaptive Rentention & Correction for Continual Learning [114.5656325514408]
A common problem in continual learning is the classification layer's bias towards the most recent task.
We name our approach Adaptive Retention & Correction (ARC)
ARC achieves an average performance increase of 2.7% and 2.6% on the CIFAR-100 and Imagenet-R datasets.
arXiv Detail & Related papers (2024-05-23T08:43:09Z) - E2-AEN: End-to-End Incremental Learning with Adaptively Expandable
Network [57.87240860624937]
We propose an end-to-end trainable adaptively expandable network named E2-AEN.
It dynamically generates lightweight structures for new tasks without any accuracy drop in previous tasks.
E2-AEN reduces cost and can be built upon any feed-forward architectures in an end-to-end manner.
arXiv Detail & Related papers (2022-07-14T09:04:51Z) - Learning to Prompt for Continual Learning [34.609384246149325]
This work presents a new paradigm for continual learning that aims to train a more succinct memory system without accessing task identity at test time.
Our method learns to dynamically prompt (L2P) a pre-trained model to learn tasks sequentially under different task transitions.
The objective is to optimize prompts to instruct the model prediction and explicitly manage task-invariant and task-specific knowledge while maintaining model plasticity.
arXiv Detail & Related papers (2021-12-16T06:17:07Z) - Learning to Relate Depth and Semantics for Unsupervised Domain
Adaptation [87.1188556802942]
We present an approach for encoding visual task relationships to improve model performance in an Unsupervised Domain Adaptation (UDA) setting.
We propose a novel Cross-Task Relation Layer (CTRL), which encodes task dependencies between the semantic and depth predictions.
Furthermore, we propose an Iterative Self-Learning (ISL) training scheme, which exploits semantic pseudo-labels to provide extra supervision on the target domain.
arXiv Detail & Related papers (2021-05-17T13:42:09Z) - Meta-learning the Learning Trends Shared Across Tasks [123.10294801296926]
Gradient-based meta-learning algorithms excel at quick adaptation to new tasks with limited data.
Existing meta-learning approaches only depend on the current task information during the adaptation.
We propose a 'Path-aware' model-agnostic meta-learning approach.
arXiv Detail & Related papers (2020-10-19T08:06:47Z) - Continual Learning with Node-Importance based Adaptive Group Sparse
Regularization [30.23319528662881]
We propose a novel regularization-based continual learning method, dubbed as Adaptive Group Sparsity based Continual Learning (AGS-CL)
Our method selectively employs the two penalties when learning each node based its the importance, which is adaptively updated after learning each new task.
arXiv Detail & Related papers (2020-03-30T18:21:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.