論文の概要: Individuation in Neural Models with and without Visual Grounding
- arxiv url: http://arxiv.org/abs/2409.18868v1
- Date: Fri, 27 Sep 2024 16:04:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-01 08:58:26.780358
- Title: Individuation in Neural Models with and without Visual Grounding
- Title(参考訳): 視覚的接地の有無を考慮したニューラルモデルにおける個別化
- Authors: Alexey Tikhonov, Lisa Bylinina, Ivan P. Yamshchikov,
- Abstract要約: 言語とビジョンのモデルであるCLIPと2つのテキストのみのモデルの違いを示す。
CLIPの埋め込みは、テキストのみのデータで訓練されたモデルよりも、識別の定量的な違いを捉えていることを実証する。
- 参考スコア(独自算出の注目度): 19.007546108571116
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We show differences between a language-and-vision model CLIP and two text-only models - FastText and SBERT - when it comes to the encoding of individuation information. We study latent representations that CLIP provides for substrates, granular aggregates, and various numbers of objects. We demonstrate that CLIP embeddings capture quantitative differences in individuation better than models trained on text-only data. Moreover, the individuation hierarchy we deduce from the CLIP embeddings agrees with the hierarchies proposed in linguistics and cognitive science.
- Abstract(参考訳): 識別情報のエンコーディングに関しては,言語とビジョンのモデルCLIPとFastTextとSBERTの2つのテキストのみのモデルの違いを示す。
ここでは,CLIPが基質,顆粒凝集体,および各種対象物に対して提供する潜在表現について検討する。
CLIPの埋め込みは、テキストのみのデータで訓練されたモデルよりも、識別の定量的な違いを捉えていることを実証する。
さらに、私たちがCLIP埋め込みから導出した識別階層は、言語学や認知科学において提案される階層と一致している。
関連論文リスト
- Interpreting and Analyzing CLIP's Zero-Shot Image Classification via Mutual Knowledge [20.09852220432504]
Contrastive Language-Image Pretraining (CLIP)は画像とテキストのクラス表現を共有埋め込み空間にマッピングすることでゼロショット画像分類を行う。
この研究は、2つのモード間の相互知識のレンズから、画像分類のためのCLIPモデルを解釈するための新しいアプローチを提供する。
論文 参考訳(メタデータ) (2024-10-16T20:18:21Z) - Deciphering the Role of Representation Disentanglement: Investigating Compositional Generalization in CLIP Models [3.9326597037266455]
構成分布(C-OoD)の一般化はCLIPモデルでは比較的未探索である。
本研究は,CLIPモデルの一般化において,画像およびテキスト表現の歪み,特に構成要素について重要な役割を担っていることを明らかにした。
論文 参考訳(メタデータ) (2024-07-08T13:04:40Z) - Language Plays a Pivotal Role in the Object-Attribute Compositional Generalization of CLIP [3.5999252362400993]
本研究では,視覚言語モデルが,属性オブジェクト対の新たな構成で画像の分類を成功させるかどうかを考察する。
その結果,OpenAI CLIP, LAION-400M, LAION-2Bなどの大規模データセットを用いてトレーニングしたCLIPは, 有効合成OoDの一般化において, オーダー・オブ・マグニチュードの改善を示すことがわかった。
本研究は,学習データと言語指導の規模と多様性が,視覚言語モデルの構成一般化能力の解放に重要な役割を果たしていることを示すものである。
論文 参考訳(メタデータ) (2024-03-27T12:59:44Z) - Fine-tuning CLIP Text Encoders with Two-step Paraphrasing [83.3736789315201]
パラフレーズに対するCLIPモデルの表現を強化するための簡単な微調整手法を提案する。
ParaCLIPと呼ばれる我々のモデルは、様々なタスクでベースラインCLIPモデルよりも大幅に改善されている。
論文 参考訳(メタデータ) (2024-02-23T06:11:50Z) - CLAP: Isolating Content from Style through Contrastive Learning with Augmented Prompts [11.752632557524969]
コンテンツの特徴を元の表現から切り離すために,データ拡張によるコントラスト学習を提案する。
多様なデータセットを対象とした実験では、ゼロショットと少数ショットの分類タスクが大幅に改善された。
論文 参考訳(メタデータ) (2023-11-28T03:00:59Z) - Understanding Transferable Representation Learning and Zero-shot Transfer in CLIP [84.90129481336659]
CLIPの基盤となるトランスファーブル表現学習について検討し、異なるモダリティの特徴の整合性を実証する。
そこで本研究では,ベンチマークデータセット上でのCLIPや他の最先端手法よりも優れた性能を実現するCLIP型アプローチを提案する。
論文 参考訳(メタデータ) (2023-10-02T06:41:30Z) - UniDiff: Advancing Vision-Language Models with Generative and
Discriminative Learning [86.91893533388628]
本稿では、画像テキストコントラスト学習(ITC)、テキスト条件付き画像合成学習(IS)、相互意味整合性モデリング(RSC)を統合した統合マルチモーダルモデルUniDiffを提案する。
UniDiffはマルチモーダル理解と生成タスクの両方において汎用性を示す。
論文 参考訳(メタデータ) (2023-06-01T15:39:38Z) - Non-Contrastive Learning Meets Language-Image Pre-Training [145.6671909437841]
非コントラスト型言語画像事前学習(nCLIP)の有効性について検討する。
我々は、CLIPとnCLIPを組み合わせたマルチタスクフレームワークであるxCLIPを紹介し、nCLIPが機能セマンティクスの強化にCLIPを支援することを示す。
論文 参考訳(メタデータ) (2022-10-17T17:57:46Z) - A Unified Understanding of Deep NLP Models for Text Classification [88.35418976241057]
我々は、テキスト分類のためのNLPモデルの統一的な理解を可能にする視覚解析ツールDeepNLPVisを開発した。
主要なアイデアは相互情報に基づく尺度であり、モデルの各レイヤがサンプル内の入力語の情報をどのように保持するかを定量的に説明する。
コーパスレベル、サンプルレベル、単語レベルビジュアライゼーションで構成されるマルチレベルビジュアライゼーションは、全体トレーニングセットから個々のサンプルまでの分析をサポートする。
論文 参考訳(メタデータ) (2022-06-19T08:55:07Z) - Dependency Induction Through the Lens of Visual Perception [81.91502968815746]
本稿では,単語の具体性を利用した教師なし文法帰納モデルと,構成的視覚に基づく構成的文法を共同学習する手法を提案する。
実験により,提案した拡張は,文法的サイズが小さい場合でも,現在最先端の視覚的接地モデルよりも優れた性能を示すことが示された。
論文 参考訳(メタデータ) (2021-09-20T18:40:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。