Suicide Phenotyping from Clinical Notes in Safety-Net Psychiatric Hospital Using Multi-Label Classification with Pre-Trained Language Models
- URL: http://arxiv.org/abs/2409.18878v2
- Date: Thu, 3 Oct 2024 20:49:55 GMT
- Title: Suicide Phenotyping from Clinical Notes in Safety-Net Psychiatric Hospital Using Multi-Label Classification with Pre-Trained Language Models
- Authors: Zehan Li, Yan Hu, Scott Lane, Salih Selek, Lokesh Shahani, Rodrigo Machado-Vieira, Jair Soares, Hua Xu, Hongfang Liu, Ming Huang,
- Abstract summary: Pre-trained language models offer promise for identifying suicidality from unstructured clinical narratives.
We evaluated the performance of four BERT-based models using two fine-tuning strategies.
The findings highlight that the model optimization, pretraining with domain-relevant data, and the single multi-label classification strategy enhance the model performance of suicide phenotyping.
- Score: 10.384299115679369
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Accurate identification and categorization of suicidal events can yield better suicide precautions, reducing operational burden, and improving care quality in high-acuity psychiatric settings. Pre-trained language models offer promise for identifying suicidality from unstructured clinical narratives. We evaluated the performance of four BERT-based models using two fine-tuning strategies (multiple single-label and single multi-label) for detecting coexisting suicidal events from 500 annotated psychiatric evaluation notes. The notes were labeled for suicidal ideation (SI), suicide attempts (SA), exposure to suicide (ES), and non-suicidal self-injury (NSSI). RoBERTa outperformed other models using multiple single-label classification strategy (acc=0.86, F1=0.78). MentalBERT (acc=0.83, F1=0.74) also exceeded BioClinicalBERT (acc=0.82, F1=0.72) which outperformed BERT (acc=0.80, F1=0.70). RoBERTa fine-tuned with single multi-label classification further improved the model performance (acc=0.88, F1=0.81). The findings highlight that the model optimization, pretraining with domain-relevant data, and the single multi-label classification strategy enhance the model performance of suicide phenotyping. Keywords: EHR-based Phenotyping; Natural Language Processing; Secondary Use of EHR Data; Suicide Classification; BERT-based Model; Psychiatry; Mental Health
Related papers
- A Comparative Analysis of Transformer and LSTM Models for Detecting Suicidal Ideation on Reddit [0.18416014644193066]
Many people express their suicidal thoughts on social media platforms such as Reddit.
This paper evaluates the effectiveness of the deep learning transformer-based models BERT, RoBERTa, DistilBERT, ALBERT, and ELECTRA.
RoBERTa emerged as the most effective model with an accuracy of 93.22% and F1 score of 93.14%.
arXiv Detail & Related papers (2024-11-23T01:17:43Z) - CausalDiff: Causality-Inspired Disentanglement via Diffusion Model for Adversarial Defense [61.78357530675446]
Humans are difficult to be cheated by subtle manipulations, since we make judgments only based on essential factors.
Inspired by this observation, we attempt to model label generation with essential label-causative factors and incorporate label-non-causative factors to assist data generation.
For an adversarial example, we aim to discriminate perturbations as non-causative factors and make predictions only based on the label-causative factors.
arXiv Detail & Related papers (2024-10-30T15:06:44Z) - Leveraging Large Language Models for Suicide Detection on Social Media with Limited Labels [3.1399304968349186]
This paper explores the use of Large Language Models (LLMs) to automatically detect suicidal content in text-based social media posts.
We develop an ensemble approach involving prompting with Qwen2-72B-Instruct, and using fine-tuned models such as Llama3-8B, Llama3.1-8B, and Gemma2-9B.
Experimental results show that the ensemble model significantly improves the detection accuracy, by 5% points compared with the individual models.
arXiv Detail & Related papers (2024-10-06T14:45:01Z) - Using Pre-training and Interaction Modeling for ancestry-specific disease prediction in UK Biobank [69.90493129893112]
Recent genome-wide association studies (GWAS) have uncovered the genetic basis of complex traits, but show an under-representation of non-European descent individuals.
Here, we assess whether we can improve disease prediction across diverse ancestries using multiomic data.
arXiv Detail & Related papers (2024-04-26T16:39:50Z) - SOS-1K: A Fine-grained Suicide Risk Classification Dataset for Chinese Social Media Analysis [22.709733830774788]
This study presents a Chinese social media dataset designed for fine-grained suicide risk classification.
Seven pre-trained models were evaluated in two tasks: high and low suicide risk, and fine-grained suicide risk classification on a level of 0 to 10.
Deep learning models show good performance in distinguishing between high and low suicide risk, with the best model achieving an F1 score of 88.39%.
arXiv Detail & Related papers (2024-04-19T06:58:51Z) - Non-Invasive Suicide Risk Prediction Through Speech Analysis [74.8396086718266]
We present a non-invasive, speech-based approach for automatic suicide risk assessment.
We extract three sets of features, including wav2vec, interpretable speech and acoustic features, and deep learning-based spectral representations.
Our most effective speech model achieves a balanced accuracy of $66.2,%$.
arXiv Detail & Related papers (2024-04-18T12:33:57Z) - Automatically measuring speech fluency in people with aphasia: first
achievements using read-speech data [55.84746218227712]
This study aims at assessing the relevance of a signalprocessingalgorithm, initially developed in the field of language acquisition, for the automatic measurement of speech fluency.
arXiv Detail & Related papers (2023-08-09T07:51:40Z) - Learning to diagnose cirrhosis from radiological and histological labels
with joint self and weakly-supervised pretraining strategies [62.840338941861134]
We propose to leverage transfer learning from large datasets annotated by radiologists, to predict the histological score available on a small annex dataset.
We compare different pretraining methods, namely weakly-supervised and self-supervised ones, to improve the prediction of the cirrhosis.
This method outperforms the baseline classification of the METAVIR score, reaching an AUC of 0.84 and a balanced accuracy of 0.75.
arXiv Detail & Related papers (2023-02-16T17:06:23Z) - Automated speech- and text-based classification of neuropsychiatric
conditions in a multidiagnostic setting [2.0972270756982536]
Speech patterns have been identified as potential diagnostic markers for neuropsychiatric conditions.
We tested the performance of a range of machine learning models and advanced Transformer models on both binary and multiclass classification.
Our results indicate that models trained on binary classification may learn to rely on markers of generic differences between clinical and non-clinical populations.
arXiv Detail & Related papers (2023-01-13T08:24:21Z) - Leveraging Contextual Relatedness to Identify Suicide Documentation in
Clinical Notes through Zero Shot Learning [8.57098973963918]
This paper describes a novel methodology that identifies suicidality in clinical notes by addressing this data sparsity issue through zero-shot learning.
A deep neural network was trained by mapping the training documents contents to a semantic space.
In applying a 0.90 probability threshold, the methodology identified notes not associated with a relevant ICD 10 CM code that documented suicidality, with 94 percent accuracy.
arXiv Detail & Related papers (2023-01-09T17:26:07Z) - SCRIB: Set-classifier with Class-specific Risk Bounds for Blackbox
Models [48.374678491735665]
We introduce Set-classifier with Class-specific RIsk Bounds (SCRIB) to tackle this problem.
SCRIB constructs a set-classifier that controls the class-specific prediction risks with a theoretical guarantee.
We validated SCRIB on several medical applications, including sleep staging on electroencephalogram (EEG) data, X-ray COVID image classification, and atrial fibrillation detection based on electrocardiogram (ECG) data.
arXiv Detail & Related papers (2021-03-05T21:06:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.