Leveraging Large Language Models for Suicide Detection on Social Media with Limited Labels
- URL: http://arxiv.org/abs/2410.04501v3
- Date: Fri, 1 Nov 2024 03:42:37 GMT
- Title: Leveraging Large Language Models for Suicide Detection on Social Media with Limited Labels
- Authors: Vy Nguyen, Chau Pham,
- Abstract summary: This paper explores the use of Large Language Models (LLMs) to automatically detect suicidal content in text-based social media posts.
We develop an ensemble approach involving prompting with Qwen2-72B-Instruct, and using fine-tuned models such as Llama3-8B, Llama3.1-8B, and Gemma2-9B.
Experimental results show that the ensemble model significantly improves the detection accuracy, by 5% points compared with the individual models.
- Score: 3.1399304968349186
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The increasing frequency of suicidal thoughts highlights the importance of early detection and intervention. Social media platforms, where users often share personal experiences and seek help, could be utilized to identify individuals at risk. However, the large volume of daily posts makes manual review impractical. This paper explores the use of Large Language Models (LLMs) to automatically detect suicidal content in text-based social media posts. We propose a novel method for generating pseudo-labels for unlabeled data by prompting LLMs, along with traditional classification fine-tuning techniques to enhance label accuracy. To create a strong suicide detection model, we develop an ensemble approach involving prompting with Qwen2-72B-Instruct, and using fine-tuned models such as Llama3-8B, Llama3.1-8B, and Gemma2-9B. We evaluate our approach on the dataset of the Suicide Ideation Detection on Social Media Challenge, a track of the IEEE Big Data 2024 Big Data Cup. Additionally, we conduct a comprehensive analysis to assess the impact of different models and fine-tuning strategies on detection performance. Experimental results show that the ensemble model significantly improves the detection accuracy, by 5% points compared with the individual models. It achieves a weight F1 score of 0.770 on the public test set, and 0.731 on the private test set, providing a promising solution for identifying suicidal content in social media. Our analysis shows that the choice of LLMs affects the prompting performance, with larger models providing better accuracy. Our code and checkpoints are publicly available at https://github.com/khanhvynguyen/Suicide_Detection_LLMs.
Related papers
- Systematic Review: Text Processing Algorithms in Machine Learning and Deep Learning for Mental Health Detection on Social Media [0.037693031068634524]
This systematic review evaluates machine learning models for depression detection on social media.
Significant biases impacting model reliability and generalizability were found.
Only 23% of studies explicitly addressed linguistic nuances like negations, crucial for accurate sentiment analysis.
arXiv Detail & Related papers (2024-10-21T17:05:50Z) - Self-Training with Pseudo-Label Scorer for Aspect Sentiment Quad Prediction [54.23208041792073]
Aspect Sentiment Quad Prediction (ASQP) aims to predict all quads (aspect term, aspect category, opinion term, sentiment polarity) for a given review.
A key challenge in the ASQP task is the scarcity of labeled data, which limits the performance of existing methods.
We propose a self-training framework with a pseudo-label scorer, wherein a scorer assesses the match between reviews and their pseudo-labels.
arXiv Detail & Related papers (2024-06-26T05:30:21Z) - Self-Taught Recognizer: Toward Unsupervised Adaptation for Speech Foundation Models [84.8919069953397]
Self-TAught Recognizer (STAR) is an unsupervised adaptation framework for speech recognition systems.
We show that STAR achieves an average of 13.5% relative reduction in word error rate across 14 target domains.
STAR exhibits high data efficiency that only requires less than one-hour unlabeled data.
arXiv Detail & Related papers (2024-05-23T04:27:11Z) - SOS-1K: A Fine-grained Suicide Risk Classification Dataset for Chinese Social Media Analysis [22.709733830774788]
This study presents a Chinese social media dataset designed for fine-grained suicide risk classification.
Seven pre-trained models were evaluated in two tasks: high and low suicide risk, and fine-grained suicide risk classification on a level of 0 to 10.
Deep learning models show good performance in distinguishing between high and low suicide risk, with the best model achieving an F1 score of 88.39%.
arXiv Detail & Related papers (2024-04-19T06:58:51Z) - Navigating the OverKill in Large Language Models [84.62340510027042]
We investigate the factors for overkill by exploring how models handle and determine the safety of queries.
Our findings reveal the presence of shortcuts within models, leading to an over-attention of harmful words like 'kill' and prompts emphasizing safety will exacerbate overkill.
We introduce Self-Contrastive Decoding (Self-CD), a training-free and model-agnostic strategy, to alleviate this phenomenon.
arXiv Detail & Related papers (2024-01-31T07:26:47Z) - Bring Your Own Data! Self-Supervised Evaluation for Large Language
Models [52.15056231665816]
We propose a framework for self-supervised evaluation of Large Language Models (LLMs)
We demonstrate self-supervised evaluation strategies for measuring closed-book knowledge, toxicity, and long-range context dependence.
We find strong correlations between self-supervised and human-supervised evaluations.
arXiv Detail & Related papers (2023-06-23T17:59:09Z) - Verifying the Robustness of Automatic Credibility Assessment [79.08422736721764]
Text classification methods have been widely investigated as a way to detect content of low credibility.
In some cases insignificant changes in input text can mislead the models.
We introduce BODEGA: a benchmark for testing both victim models and attack methods on misinformation detection tasks.
arXiv Detail & Related papers (2023-03-14T16:11:47Z) - A Quantitative and Qualitative Analysis of Suicide Ideation Detection
using Deep Learning [5.192118773220605]
This paper replicated competitive social media-based suicidality detection/prediction models.
We evaluated the feasibility of detecting suicidal ideation using multiple datasets and different state-of-the-art deep learning models.
arXiv Detail & Related papers (2022-06-17T10:23:37Z) - An ensemble deep learning technique for detecting suicidal ideation from
posts in social media platforms [0.0]
This paper proposes a LSTM-Attention-CNN combined model to analyze social media submissions to detect suicidal intentions.
The proposed model demonstrated an accuracy of 90.3 percent and an F1-score of 92.6 percent.
arXiv Detail & Related papers (2021-12-17T15:34:03Z) - Detecting Potentially Harmful and Protective Suicide-related Content on
Twitter: A Machine Learning Approach [0.1582078748632554]
We apply machine learning methods to automatically label large quantities of Twitter data.
Two deep learning models achieved the best performance in two classification tasks.
This work enables future large-scale investigations on harmful and protective effects of various kinds of social media content on suicide rates and on help-seeking behavior.
arXiv Detail & Related papers (2021-12-09T09:35:48Z) - Towards Good Practices for Efficiently Annotating Large-Scale Image
Classification Datasets [90.61266099147053]
We investigate efficient annotation strategies for collecting multi-class classification labels for a large collection of images.
We propose modifications and best practices aimed at minimizing human labeling effort.
Simulated experiments on a 125k image subset of the ImageNet100 show that it can be annotated to 80% top-1 accuracy with 0.35 annotations per image on average.
arXiv Detail & Related papers (2021-04-26T16:29:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.