論文の概要: A-FedPD: Aligning Dual-Drift is All Federated Primal-Dual Learning Needs
- arxiv url: http://arxiv.org/abs/2409.18915v2
- Date: Tue, 21 Jan 2025 06:10:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-22 14:15:53.628359
- Title: A-FedPD: Aligning Dual-Drift is All Federated Primal-Dual Learning Needs
- Title(参考訳): A-FedPD:Dual-Driftの調整は、すべてフェデレーションされたPrimal-Dual Learningの必要性
- Authors: Yan Sun, Li Shen, Dacheng Tao,
- Abstract要約: 本稿では,グローバルクライアントとローカルクライアントの仮想二重配向を構成する新しいアラインドデュアルデュアル(A-FedPD)手法を提案する。
本稿では,A-FedPD方式の非集中型セキュリティコンセンサスに対する効率を包括的に分析する。
- 参考スコア(独自算出の注目度): 57.35402286842029
- License:
- Abstract: As a popular paradigm for juggling data privacy and collaborative training, federated learning (FL) is flourishing to distributively process the large scale of heterogeneous datasets on edged clients. Due to bandwidth limitations and security considerations, it ingeniously splits the original problem into multiple subproblems to be solved in parallel, which empowers primal dual solutions to great application values in FL. In this paper, we review the recent development of classical federated primal dual methods and point out a serious common defect of such methods in non-convex scenarios, which we say is a "dual drift" caused by dual hysteresis of those longstanding inactive clients under partial participation training. To further address this problem, we propose a novel Aligned Federated Primal Dual (A-FedPD) method, which constructs virtual dual updates to align global consensus and local dual variables for those protracted unparticipated local clients. Meanwhile, we provide a comprehensive analysis of the optimization and generalization efficiency for the A-FedPD method on smooth non-convex objectives, which confirms its high efficiency and practicality. Extensive experiments are conducted on several classical FL setups to validate the effectiveness of our proposed method.
- Abstract(参考訳): データプライバシと協調トレーニングをジャグリングするための一般的なパラダイムとして、フェデレーションドラーニング(FL)は、エッジクライアント上で大規模な異種データセットを分散処理するために栄えています。
帯域幅の制限とセキュリティ上の考慮のため、元々の問題を複数のサブプロブレムに分割して並列に解決する。
本稿では,従来からある非活動的クライアントの二重ヒステリシスに起因した「二重ドリフト」である非凸シナリオにおいて,このような手法の深刻な共通欠陥を指摘する。
さらにこの問題に対処するために,グローバルなコンセンサスとローカルな2変数を協調する仮想二重更新を構築する,アラインド・フェデレート・プライマル・デュアル(A-FedPD)手法を提案する。
一方,A-FedPD法における最適化と一般化の効率を円滑な非凸目的に対して総合的に解析し,その効率と実用性を確認した。
提案手法の有効性を検証するため,いくつかの古典的FL装置を用いて実験を行った。
関連論文リスト
- Efficient and Robust Regularized Federated Recommendation [52.24782464815489]
推薦システム(RSRS)は、ユーザの好みとプライバシの両方に対処する。
通信効率を向上させるために,非一様勾配勾配勾配を取り入れた新しい手法を提案する。
RFRecFの強靭性は、多様なベースラインに比べて優れている。
論文 参考訳(メタデータ) (2024-11-03T12:10:20Z) - FedDAT: An Approach for Foundation Model Finetuning in Multi-Modal
Heterogeneous Federated Learning [37.96957782129352]
我々はFederated Dual-Aadapter Teacher(Fed DAT)と呼ばれる異種マルチモーダル基礎モデルに適した微調整フレームワークを提案する。
Fed DATは、クライアントのローカル更新を規則化し、MKD(Mutual Knowledge Distillation)を効率的な知識伝達に適用することで、データの均一性に対処する。
その有効性を示すために、異なる種類のデータ不均一性を持つ4つの多モードFLベンチマークについて広範な実験を行った。
論文 参考訳(メタデータ) (2023-08-21T21:57:01Z) - Vertical Semi-Federated Learning for Efficient Online Advertising [50.18284051956359]
VFLの実践的な産業的応用を実現するために,Semi-VFL (Vertical Semi-Federated Learning) を提案する。
サンプル空間全体に適用可能な推論効率のよいシングルパーティ学生モデルを構築した。
新しい表現蒸留法は、重なり合うデータと非重なり合うデータの両方について、パーティ間の特徴相関を抽出するように設計されている。
論文 参考訳(メタデータ) (2022-09-30T17:59:27Z) - Federated Coordinate Descent for Privacy-Preserving Multiparty Linear
Regression [0.5049057348282932]
我々は、FCDと呼ばれる新しい分散スキームであるFederated Coordinate Descentを紹介し、マルチパーティシナリオ下でこの問題に安全に対処する。
具体的には、セキュアな集約と追加の摂動により、(1)ローカル情報が他の当事者にリークされることがなく、(2)グローバルモデルパラメータがクラウドサーバに公開されることが保証される。
また,FCD方式は, 線形, リッジ, ラッソ回帰などの一般線形回帰に適用可能であることを示す。
論文 参考訳(メタデータ) (2022-09-16T03:53:46Z) - Disentangled Federated Learning for Tackling Attributes Skew via
Invariant Aggregation and Diversity Transferring [104.19414150171472]
属性は、クライアント間の一貫した最適化方向から、現在の連邦学習(FL)フレームワークを歪めます。
本稿では,ドメイン固有属性とクロス不変属性を2つの補足枝に分離するために,非絡み付きフェデレーション学習(DFL)を提案する。
実験により、DFLはSOTA FL法と比較して高い性能、より良い解釈可能性、より高速な収束率でFLを促進することが確認された。
論文 参考訳(メタデータ) (2022-06-14T13:12:12Z) - FedADMM: A Robust Federated Deep Learning Framework with Adaptivity to
System Heterogeneity [4.2059108111562935]
Federated Learning(FL)は、エッジデバイスによる大規模データの分散処理のための新興フレームワークである。
本稿では,FLAD FedADMMに基づく新しいプロトコルを提案する。
我々は,FedADMMが通信効率の点で,すべてのベースライン手法を一貫して上回っていることを示す。
論文 参考訳(メタデータ) (2022-04-07T15:58:33Z) - Differentially Private Federated Learning on Heterogeneous Data [10.431137628048356]
フェデレートラーニング(Federated Learning、FL)は、大規模分散ラーニングのパラダイムである。
i)高度に異質なユーザデータからの効率的なトレーニング、(ii)参加ユーザのプライバシ保護という2つの大きな課題に直面しています。
本稿では,差分プライバシー(DP)制約を取り入れた新しいFL手法を提案する。
論文 参考訳(メタデータ) (2021-11-17T18:23:49Z) - Low-Latency Federated Learning over Wireless Channels with Differential
Privacy [142.5983499872664]
フェデレートラーニング(FL)では、モデルトレーニングはクライアントに分散し、ローカルモデルは中央サーバによって集約される。
本稿では,各クライアントの差分プライバシ(DP)要件だけでなく,全体としてのトレーニング性能に制約された無線チャネル上でのFLトレーニング遅延を最小限に抑えることを目的とする。
論文 参考訳(メタデータ) (2021-06-20T13:51:18Z) - Hybrid Federated Learning: Algorithms and Implementation [61.0640216394349]
Federated Learning(FL)は、分散データセットとプライベートデータセットを扱う分散機械学習パラダイムである。
ハイブリッドFLのためのモデルマッチングに基づく新しい問題定式化を提案する。
次に,グローバルモデルとローカルモデルを協調して学習し,完全かつ部分的な特徴量を扱う効率的なアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-12-22T23:56:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。