論文の概要: ReviveDiff: A Universal Diffusion Model for Restoring Images in Adverse Weather Conditions
- arxiv url: http://arxiv.org/abs/2409.18932v1
- Date: Fri, 27 Sep 2024 17:29:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-01 07:51:30.113757
- Title: ReviveDiff: A Universal Diffusion Model for Restoring Images in Adverse Weather Conditions
- Title(参考訳): ReviveDiff: 逆気象条件下での画像復元のためのユニバーサル拡散モデル
- Authors: Wenfeng Huang, Guoan Xu, Wenjing Jia, Stuart Perry, Guangwei Gao,
- Abstract要約: 本稿では,広範囲の劣化に対処できる汎用ネットワークアーキテクチャ"ReviveDiff"を提案する。
我々のアプローチは、悪条件下での品質劣化は、主に天然メディアに由来するという観察から着想を得たものである。
我々は,5種類の劣化条件をカバーする7つのベンチマークデータセットに対して,ReviveDiffを厳格に評価した。
- 参考スコア(独自算出の注目度): 10.432572684209505
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Images captured in challenging environments--such as nighttime, foggy, rainy weather, and underwater--often suffer from significant degradation, resulting in a substantial loss of visual quality. Effective restoration of these degraded images is critical for the subsequent vision tasks. While many existing approaches have successfully incorporated specific priors for individual tasks, these tailored solutions limit their applicability to other degradations. In this work, we propose a universal network architecture, dubbed "ReviveDiff", which can address a wide range of degradations and bring images back to life by enhancing and restoring their quality. Our approach is inspired by the observation that, unlike degradation caused by movement or electronic issues, quality degradation under adverse conditions primarily stems from natural media (such as fog, water, and low luminance), which generally preserves the original structures of objects. To restore the quality of such images, we leveraged the latest advancements in diffusion models and developed ReviveDiff to restore image quality from both macro and micro levels across some key factors determining image quality, such as sharpness, distortion, noise level, dynamic range, and color accuracy. We rigorously evaluated ReviveDiff on seven benchmark datasets covering five types of degrading conditions: Rainy, Underwater, Low-light, Smoke, and Nighttime Hazy. Our experimental results demonstrate that ReviveDiff outperforms the state-of-the-art methods both quantitatively and visually.
- Abstract(参考訳): 夜間、霧、雨天、水中などの困難な環境で撮影された画像は、しばしば著しく劣化し、視覚的品質が著しく低下する。
これらの劣化した画像の効果的な復元は、その後の視覚タスクにとって重要である。
既存の多くのアプローチでは、個々のタスクに対して特定の優先順位を組み込むことに成功したが、これらの調整されたソリューションは適用性を他の劣化に制限している。
本研究では,多種多様な劣化に対処し,その品質を向上し,回復させることで,イメージを生き返らせる,"ReviveDiff"と呼ばれるユニバーサルネットワークアーキテクチャを提案する。
我々のアプローチは、運動や電子的問題によって引き起こされる劣化とは異なり、悪条件下での品質劣化は主に自然媒質(霧、水、低輝度など)が原因であり、物体の本来の構造を一般的に保存する、という観察に着想を得たものである。
このような画像の品質を回復するために、拡散モデルの最新の進歩を活用し、画像のシャープネス、歪み、ノイズレベル、ダイナミックレンジ、色精度など、画像品質を決定する重要な要因を網羅して、マクロレベルとマイクロレベルの両方から画像品質を復元するReviveDiffを開発した。
ReviveDiffを、Rainy、Underwater、Low-light、Smoke、Nighttime Hazyの5種類の劣化条件をカバーする7つのベンチマークデータセットで厳格に評価した。
実験の結果, ReviveDiffは, 定量的, 視覚的に, 最先端の手法よりも優れていた。
関連論文リスト
- Diff-Restorer: Unleashing Visual Prompts for Diffusion-based Universal Image Restoration [19.87693298262894]
拡散モデルに基づく普遍的な画像復元手法であるDiff-Restorerを提案する。
我々は、事前学習された視覚言語モデルを用いて、劣化した画像から視覚的プロンプトを抽出する。
また、デグレーション対応デコーダを設計し、構造的補正を行い、潜在コードをピクセル領域に変換する。
論文 参考訳(メタデータ) (2024-07-04T05:01:10Z) - Photo-Realistic Image Restoration in the Wild with Controlled Vision-Language Models [14.25759541950917]
この研究は、能動的視覚言語モデルと合成分解パイプラインを活用して、野生(ワイルドIR)における画像復元を学習する。
我々の基底拡散モデルは画像復元SDE(IR-SDE)である。
論文 参考訳(メタデータ) (2024-04-15T12:34:21Z) - Joint Conditional Diffusion Model for Image Restoration with Mixed Degradations [29.14467633167042]
悪天候下における画像復元のための新しい手法を提案する。
大気散乱モデルに基づく混合劣化モデルを用いて, 復元過程全体を導出する。
マルチウェザーおよび気象特化データセットの実験は、最先端の競合手法よりも、我々の手法が優れていることを示す。
論文 参考訳(メタデータ) (2024-04-11T14:07:16Z) - AdaIR: Adaptive All-in-One Image Restoration via Frequency Mining and Modulation [99.57024606542416]
周波数マイニングと変調に基づく適応的なオールインワン画像復元ネットワークを提案する。
我々のアプローチは、異なる周波数サブバンド上の画像内容に異なる劣化タイプが影響を及ぼすという観察によって動機付けられている。
提案モデルでは,入力劣化に応じて情報周波数サブバンドをアクセントすることで適応的再構成を実現する。
論文 参考訳(メタデータ) (2024-03-21T17:58:14Z) - InstructIR: High-Quality Image Restoration Following Human Instructions [61.1546287323136]
本稿では,人間の手書きによる画像復元モデルを導出する手法を提案する。
InstructIRという手法は、いくつかの修復作業において最先端の結果を得る。
論文 参考訳(メタデータ) (2024-01-29T18:53:33Z) - All-in-one Multi-degradation Image Restoration Network via Hierarchical
Degradation Representation [47.00239809958627]
我々は新しいオールインワン・マルチデグレーション画像復元ネットワーク(AMIRNet)を提案する。
AMIRNetは、クラスタリングによって木構造を段階的に構築することで、未知の劣化画像の劣化表現を学習する。
この木構造表現は、様々な歪みの一貫性と不一致を明示的に反映しており、画像復元の具体的な手がかりとなっている。
論文 参考訳(メタデータ) (2023-08-06T04:51:41Z) - PromptIR: Prompting for All-in-One Blind Image Restoration [64.02374293256001]
我々は、オールインワン画像復元のためのプロンプトIR(PromptIR)を提案する。
本手法では, 劣化特異的情報をエンコードするプロンプトを用いて, 復元ネットワークを動的に案内する。
PromptIRは、軽量なプロンプトがほとんどない汎用的で効率的なプラグインモジュールを提供する。
論文 参考訳(メタデータ) (2023-06-22T17:59:52Z) - DR2: Diffusion-based Robust Degradation Remover for Blind Face
Restoration [66.01846902242355]
ブラインド顔復元は通常、トレーニングのための事前定義された劣化モデルで劣化した低品質データを合成する。
トレーニングデータに現実のケースをカバーするために、あらゆる種類の劣化を含めることは、高価で実現不可能である。
本稿では、まず、劣化した画像を粗いが劣化不変な予測に変換し、次に、粗い予測を高品質な画像に復元するために拡張モジュールを使用するロバスト劣化再帰法(DR2)を提案する。
論文 参考訳(メタデータ) (2023-03-13T06:05:18Z) - See Blue Sky: Deep Image Dehaze Using Paired and Unpaired Training
Images [73.23687409870656]
本稿では,新しいエンドツーエンド画像デヘイズモデルを構築するために,サイクル生成対向ネットワークを提案する。
我々は、実世界の未ペア画像データセットとペア画像データセットのセットを含む、私たちのモデルをトレーニングするために、屋外画像データセットを採用しています。
本モデルでは, サイクル構造に基づいて, 対向損失, サイクル整合損失, フォトリアリズム損失, ペアL1損失を含む4種類の損失関数を付加した。
論文 参考訳(メタデータ) (2022-10-14T07:45:33Z) - Semi-supervised atmospheric component learning in low-light image
problem [0.0]
環境照明条件は、写真装置から画像の知覚的品質を決定する上で重要な役割を担っている。
本研究では,低照度画像復元のための非参照画像品質指標を用いた半教師付きトレーニング手法を提案する。
論文 参考訳(メタデータ) (2022-04-15T17:06:33Z) - Invertible Image Rescaling [118.2653765756915]
Invertible Rescaling Net (IRN) を開発した。
我々は、ダウンスケーリングプロセスにおいて、指定された分布に従う潜在変数を用いて、失われた情報の分布をキャプチャする。
論文 参考訳(メタデータ) (2020-05-12T09:55:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。